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Abstract  

       In this paper, we provides two propositions that give a direct computing of the 

Elliptic Curve Discrete Logarithm problem (ECDLP) and propose a method  for the 

computation of discrete logarithms in the Elliptic Curve (EC) defined over finite fields. 

This propositions and propose method provides a new approach to the field of attacking 

methods of the Elliptic Curve Cryptosystems. In addition, we give a program to 

implement the proposed method by using MATLAP. 

 
 

Introduction 

       Severalr esearches were available 

about ECDLP related to them. For good 

survey one can turn to[4]. The security of 

modren public key cryptosystems is 

based in the difficulty for solving 

efficiently some kind of mathematical 

problems. Since the invention of the 

public key cryptography by Diffie and 

Hellman in 1976[1], many public key 

cryptosysytems have been proposed, of 

these some have been broken and others 

have been demonstrated to be 

impractical. Tody, only three type of 

systems are considered enough secure 

and efficient. Such systems are based in 

one of the following mathematical 

problems: 

Integer factorization problem ( IFP). 

Discrete logarithm problem (DLP). 

Elliptic Curve Discrete Logarithm 

problem (ECDLP). 

       Although non of these problems 

have been proved to be intractable, are 

 considered as intractable because years 

of study has failed to yield efficient 

algorithms to solve them. The Elliptic 

Curve Discrete Logarithm problem can 

be defined as followes: Given an elliptic 

curve E defined over a finite field, a 

point P of order n on E, and a point Q a 

point in the group generated by P, 

determine the integer k is called the 

discrete logarithm of Q to the base P, 

denoted   k = between 0 andn–1 such that 

Q =[k]P, provided that such an integer 

exists.Based on the statement above we 

define Qto be the public key and kthe 

private one.Based on intractabilityof this 

problem, Neal Koblitz [3] and Victor 

Miller [5] independently proposed using 

the group of points on an elliptic curve 

defined over a finite field to implement 

the various discrete logarithm 

cryptosystems. Elliptic curves have been 

applied to modify public key 

cryptosystem, such as the DSA [6]. 
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Background on Elliptic Curves  

       An elliptic curve E over field is 

defined by an equation of the form   

y
2
 = x

3
 + ax + b,                      (1) 

where a, b , such that 4a
3
 + 27b

2
0 in. 

The set E  consists in all points (x, y)  

which satisfy equation (1), together with 

a special pointO, called the point at the 

infinity. 
E forms an abelian group with the 

addition operation defined as follow: 

O⊕O =O 

(x, y) ⊕O = (x, y), O is the identity 

(x, y) ⊕(x,– y) = O. The inverse of one 

element is obtained changing the sign of 

the second component. 

To add two different elements, which are 

not one inverse of the other, we apply the 

following rule : 

 (x1, y1) ⊕ (x2, y2) = (x3, y3) 

       x3 = 2 – x1 – x2,    y3 = (x1 – x3) – y1 

To add a point with itself, we apply the 

rule :     

2(x1, y1) = (x3, y3)                       

      x3 = – 2x1,         y3 = (x1 – x3) – y1 

The last two operations have a straight 

geometric interpretation. As shown in 

Figure (1), if P=(x1, y1) and Q=(x2, y2) 

are two distinct points over the elliptic 

curve, then the sum of P, Q, denoted as 

R=(x3, y3),defined as follows: First draw 

a line through P and Q. This line 

intersects the EC at the third point R. 

Tacking the reflection of this point about 

the x-axis. We obtain the point R. 
To add a point P =(x1, y1) to itself, a 

tangent line to the curve is drawn at the 

point P. If y10then the tangent line 

intersects the curve at a second point, R. 

R is reflected to the x-axis to R. This 

operation is called doubling the point P 

as shown in Figure (2).  

If a point P is such that y1=0, then the 

tangent line to the EC at P is vertical and 

does intersect the EC at any other point. 

By part(5),[2] P=O for such a point P as 

shown in Figure (3). 
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If P  E then we denoted as [k]P the 

result of adding k times with himself; 
  

timesk

PPP 

and the order of P is the 

x  
P  

R 

 

 
R

'  
Figure 2:  Geometric Doubling of Elliptic 

Curve Points, when y1 0. 
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Figure 1:  Geometric Addition of Elliptic  

Curve Points. 

 

 

 Q
 

 

    P 

 

Figure 3:  Geometric Doubling of Elliptic 
Curve Points, when y1 = 0. 
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smallest positive integer n such that [n]P 

= O. We denote the order of  P byord 

(P) [2]. 

 

Inventions for Solving ECDLP   

This section provides two proposition 

that give a direct computing of the 

ECDLP and anew attacking methodto 

slove ECDLP. 

 

Proposition (1) 

Let E be an EC defined over the finite 

field pF , and P, Q E ( pF ) and ord (P)=n, 

compute R=[A]P  Q where A [2, n – 

1] then  

If R=Othen QlogP =(n – A) mod n. 

If R=P  then QlogP =(1 – A) mod n. 

If R=⊖ P then QlogP =(–1 – A) mod n. 

Proof: 

Since R = [A]P  Q then R = [A + k]P 

and since ord (P) = n[n]P = O. So if  

R = O then [A + k]P  = O A + k = n  

 A + k = n (mod n)  

  k  = (n – A)  mod n. 

 

Since R = [A]P  Q then R = [A + k]P 

and sinceord (P)=n[n]P = O. So if   R 

= P then [A + k]P =P A+k =1  

 A + k=1 (mod n)  

  k=(1 – A)   mod n. 

3) Since R = [A]P  Q then R = [A + 

k]P and since ord (P) = n[n]P = 

O. So if R=⊖ P then[A+k]P= ⊖ P 

 A + k = – 1  

 A + k = – 1 (mod n)  

  k  = ( – 1 – A)  mod n. 

 

Example (1) 

Consider the elliptic curve E defined 

over by the equation: 

E : y
2
 = x

3
 + 102 x + 35. 

Let P = (100, 15)  E. We wish to 

determine the discrete logarithm of point      

Q = (75, 50) to the base P. 

Solution: 

          The order of P is n = 142. 

1) Choose A  [2, n – 1], let A = 93 and 

then compute Z = [A]P  Q =[93](100, 

15)  (75, 50)=(75, 81)  (75, 50) = O, 

hence by Proposition (1.1) then k(n–A) 

mod n=(142–93) mod142 = 49 mod 142 

= 49. Then the discrete logarithm of Q to 

the base P is 49. 

 

2) Choose A  [2, n – 1], let A=94 and 

then compute Z=[16]PQ=[94](100,15) 

 (75,50)=(99,40) (75,50)=(100,15)=P, 

hence by Proposition (1.1) then k  (1– 

A) mod n = (1–94) mod 142 = – 93 mod 

142 = 49. Then the discrete logarithm   of 

Q to the base P is 49. 

3) Choose A  [2, n – 1], let A = 92 and 

then compute Z=[192]P  Q= [92](100, 

15)(75, 50)= (68, 86) (75, 50) = (100, 

116) =⊖P, hence by Proposition (1.3) 

then  k  (– 1–A) mod n = (– 1– 92) mod 

142= –93 mod 142=49. Then the discrete 

logarithm of Q to the base P is 49. 
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Proposition (2) 

       Let E be an EC defined over the 

finite field, and P, Q  E  and  or d (P)= 

n, compute R=P  [B]Q where  B[2, n 

– 1] then  

If R=O and gcd (B, n)=1 then  mod n. 

If R=Q and gcd (1–B, n)=1 then  mod n. 

If R=⊖ Q and gcd (–1–B, n)=1 then  

mod n. 

Proof: 
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Since R=P[B]Q then R=[1+ Bk]P and 

since ord (P)=n[n]P=O. So if  R=O 

then [ 1+B  k]P =O 1+Bk=n  

 1+B  k =n (mod n)  

  k= mod n. 

Since R=P [B]Q then R=[1 + Bk]P and 

since ord (P)=n [n]P=O. So if  R=Q 

then [1+B  k] P=Q  [1+B  k] P=[k]P 

 1 + B  k = k  

 1 + B  k = k (mod n)  

 1 = k – B  k (mod n)  

 1= k  (1 – B) (mod n)  

  k=  mod n. 

Since R=P  [B]Q then R=[1+B k]P and 

since or d (P)=n [n]P=O. So if  R=⊖ 

Qthen[1+Bk]P=⊖Q[1+Bk]P =⊖[k]P 

 1 + B  k = – k  

 1 + B  k = – k (mod n)  

 1 = – k – B  k (mod n)  

 1 = k  (– 1 – B) (mod n)  

  k= mod n. 

 

 

Proposed Method 

Let E( pF
) be an elliptic curve with 

generator P. Suppose that P has order n, 

and let QE Suppose that we want find k 

such that Q=[k]P. Calculate R=PQ. 

Then calculate [d] Q for 1d n–1 and 

check these points until found a match 

with point R. When a match is found we 

have solved the ECDLP as following: 

            [d]Q=R hence, 

[d]Q=P  Q 

[d]Q ⊖ Q = P  

[d – 1]Q =P  

Q = P. 

Therefore, if  gcd (d–1, n)=1, we get that  

k =  mod n. 

Example 3 

Consider the elliptic curve E defined 

over 641
F by the equation: 

E :y2 = x3 +3x + 44. 

Let P=(401, 245)E. We wish to 

determine the discrete logarithm of point 

Q=(584, 405) to the base P.  

Solution: 

            The order of P is n=647. Firstly 

calculate R=PQ=(401, 245)(584, 

405)=(260, 162) 

Now, calculate [d]Q for1d647 until we 

find a match with point R as following: 

[1]Q=[1](584, 405)=(584, 405) 

[2]Q=[2](584, 405)=(25, 436) 

[3]Q=[3](584, 405)=(180, 240) 

[4]Q=[4](584, 405)=(332, 398) 

 [163]Q=[163](584,405)=(250, 360) 

[164]Q=[164](584, 405)=(260,162) 

At this point we have a match. Hence we 

find that k mod n  

 

Also, a new proposed method for solving 

the ECDLP were suggested. It can be 

considered as a new  approach to tackle 

the problem of attacking the ECDLP.  

         That is provides a reduction to  

 

mathematical operations. This leads to 

main conclusion that the new proposed 

method is batter than the Exhaustive 

Search in the reduction cost can be 

offered for complexity of calculation. 
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Appendix  

       The Program for computing the 

discrete logarithm k of point Q=(x2, y2) 

to the base P=(x1,y1) from Q=[k]P, 

where P,Q∈E:y2= x3+ax+b defined over. 

(1)   %  program to find secret key k 

(2)   p  = input ('enter prime no. p ='); 
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(3)   a= input('enter integer no.a='); 

(4)   b  = input('enter integer no.b='); 

(5)   x1 = input ('enter integer no. x1='); 

(6) y1   = input ('enter integer no. y1='); 

(7) x2   = input ('enter integer no. x2 ='); 

(8) y2  = input ('enter integer no. y2 ='); 

(9)  m1=mod(y2-y1,p); 

(10)   m2=mod(x2-x1,p); 

(11)   for z=1:p-1 

(12)   w=mod(m2*z,p); 

(13)   if w==1;[z];  

(14)   m=mod(m1*z,p); 

(15)   end,end 

(16)   xR=mod(m^2-x1-x2,p); 

(17)   yR=mod(m*(x1-xR)-y1,p); 

(18)   R=[xR yR]; 

(19)   for k=1:2*p 

(20)   r=dec2bin(k); 

(21)   [row,col]=size(r); 

(22)   xk=x1; 

(23)   yk=y1; 

(24)   for i=2:col 

(25)m1=mod(3*xk^2+a,p); 

(26)m2=mod(2*yk,p); 

(27)   for z=1:p-1 

 (28)w=mod(m2*z,p); 

(29)   if w==1;[z];m=mod(m1*z,p); 

(30)   end,end 

(31)x3=mod(m^2-2*xk,p); 

(32)y3=mod(m*(xk-x3)-yk,p); 

(33)s=[x3 y3]; 

(34)xk=s(1); 

(35)yk=s(2); 

(36)   if r(i)==49 

(37)m1=mod(yk-y1,p); 

(38)m2=mod(xk-x1,p); 

(39)   for z=1:p-1 

(40)w=mod(m2*z,p); 

(41)   if w==1;[z];mm=mod(m1*z,p); 

(42)   end,end 

 (43)x4=mod(mm^2-x1-xk,p); 

(44)y4=mod(mm*(x1-x4)-y1,p); 

(45)z=[x4 y4] ;  

(46)xk=z(1); 

(47)yk=z(2); 

(48)   end,end 

(49)   if xk==x1 & yk~=y1 

(50)n=[k+1];break 

(51)   end 

(52)R=[xk,yk]; 

(53)   end 

(54)   for d=1:n-1 

(55)r=dec2bin(d); 

(56)[row,col]=size(r); 

(57)xd=x2; 

(58)yd=y2; 

(59)   for i=2:col 

(60)m1=mod(3*xd^2+a,p); 

(61)m2=mod(2*yd,p); 

(62)   for z=1:p-1 

(63)w=mod(m2*z,p); 

(64)   if w==1;[z];m=mod(m1*z,p); 

(65)   end,end 

(66)x3=mod(m^2-2*xd,p); 

(67)y3=mod(m*(xd-x3)-yd,p); 

(68)s=[x3 y3]; 

(69)xd=s(1); 

(70)yd=s(2); 

(71)   if r(i)==49 

(72)m1=mod(yd-y2,p); 

 (73)m2=mod(xd-x2,p); 

(74)   for z=1:p-1 

(75)w=mod(m2*z,p); 

(76)   if w==1;[z];mm=mod(m1*z,p); 

(77)   end,end 

(78)x4=mod(mm^2-x2-xd,p); 

(79)y4=mod(mm*(x2-x4)-y2,p); 

(80)z=[x4 y4] ;  

(81)xd=z(1); 

(82)yd=z(2); 
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 (83)   end,end 

(84)[xd,yd]; 

(85)   if [xd,yd]==[xR,yR] 

(86)di=d; 
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(87)   break 

(88)   end,end 

(89)d; r=d-1; 

(90)   for z=1:n-1 

(91)w=mod(r*z,n); 

(92)   if w==1; [z]; r=1*z; inversrer=r; 

(93)   end,end 

(94)k = mod (inversrer,n); 

(95)secretkey = k 

 

Example (2) 

Consider the elliptic curve E defined 

over by the equation: 

E:y
2
 = x

3
 +102 x + 35. 

Let P=(100,15)E). We wish to 

determine the discrete logarithm of point  

Q=(75, 50) to the base P. 

Solution:  

The order of P is n=142. 

Choose B [2, n–1], let B =113 and then 

compute Z=P[B]Q=(100,15) [113] 

(75, 50)=(100, 15)(100,116)=O, hence 

by Proposition (2.1) then k mod n=  

mod142= mod 142=141 

 mod 142=14193 mod 142=13113 mod 

142=49. Then the discrete logarithm of Q 

to the base P is 49. 

Choose B[2, n –1], let B=114 and then 

compute Z=P[B]Q=(100,15)[114] 

(75, 50)=(100, 15)(99, 91)=(75, 50)=Q, 

hence by Proposition (2.2) then   

k  mod n= mod 142= mod 142 = mod 

142=1 mod 142 =149 mod 142=49. 

Then the discrete logarithm of Q to the 

base P is 31. 

Choose B [2, n – 1], let B=112 and then 

compute Z=P[16]Q=(100,15)[112] 

(75,50)=(100,15) (68, 86)=(75,81)=⊖ 

Q, hence by Proposition (2.3) then  k 

mod n= mod 142= mod 142= mod 

142=1 mod 142=149 mod 142=49. 

Then the discrete logarithm of Q to the 

base P is 49. 

= mod 647= mod 647= 

(1) mod 647=(1389) mod 647=389 

Thus  k= 389. 

           

Algorithm 1  

A proposed method algorithm for 

computing ECDLP. 

INPUT: a generator P of a cyclic group 

E,  of order n and an point Q ∈E. 

OUTPUT: the discrete logarithm k. 

1. Calculate R=P  Q. 

2. For d from 1 to n–1 do the following : 

2.1 If R=[d]Q then do the following: 

             Set r =d –1 

              If gcd(r , n)=1 

K= mod n and return k 

 

Conclusions 

       In this paper, we get two 

propositions that compute in E over the 

finite field without method but with some 

condition. The first proposition that starts 

with initial point R=[A]P  Q where 

A[2, n–1] such that discrete logarithm 

of Q to the base P in E over the finite 

field as follows: 

 mod n         if  R = O  

mod n         if  R = P 

mod n         if  R = ⊝P 

 

       The second proposition that starts 

with initial point R=P  [B]Q where B 

[2, n–1] such that discrete logarithm of Q 

to the base P in E over the finite field  as 

follows:  
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    mod n                 if  R = O 

    mod n                if  R = Q   

    mod n                if  R = ⊝Q  
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 :الخلاصة

قضيتين اللتان تعطيان حساب مباشر لمسالة اللوغاريتم المنفصل في المنحنيات الاهليليجية  قدمنا في هذا البحث       

هذه واقترحنا طريقة جديدة لحل مسالة اللوغاريتم المنفصل في المنحنيات الاهليليجية المعرف على الحقل المنتهي 

 كما.  النظريَتين والطريقة الجديدة توفر وسيلة جديدة إلى مجال طرق مهاجمة أنظمة تشفير المنحنيات الاهليليجية

 .البحث برنامج لتنفيذ الطريقة المقترحة باستخدام الماتلاب هذا أعطينا في
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