

On Artin Cokernel of The Group D_n×C₇ When n is an Odd Number

Ass.Lec. Amer Khraja Abed Al-shypany Al-muthanna Education, Ministry of Education <u>A8iraq@gmail.com</u> Received 23-3-2016, Accepted 12-6-2016, Published 13-10-2016

Abstract:

The group of all Z-valued generalized characters of G over the group of induced unit characters from all cyclic subgroups of G, $AC(G) = \overline{R}(G)/T(G)$ forms a finite abelian group, called Artin Cokernel of G. The problem of finding the cyclic decomposition of Artin cokernel $AC(D_n \times C_7)$ has been considered in this paper when n is an odd number, we find that if $n = p_1^{\alpha_1} ... p_1^{\alpha_2} ... p_m^{\alpha_m}$, where $p_1, p_2, ..., p_m$ are distinct primes and not equal to 2, then :

And we give the general form of Artin's characters table Ar $(D_n \times C_7)$ when n is an odd number.

Introduction

For a finite group G the finite abelain factor group \overline{R} (G) /T(G) is called Artin cokernel of G and denoted by AC(G) where \overline{R} (G) denotes the abelian group generated by Z-valued characters of G under the operation of pointwise addition and T(G) is a normal subgroup of \overline{R} (G) which is generated by Artin's characters. Permutation charcters induce from the principle charcters of cyclic Subgroups. A wellknown theorem which is due to Artin asserated that T(G) has a finite index is, i.e [:T(G)] is finite .The exponent of AC(G) is called Artin exponent of G and denoted by A (G). In 1968, Lam. T .Y [5] gave the definition of the group AC(G) and studied AC(C_n). In 1976, David. G [12] studied A(G) of arbitrary cyclic subgroups. In characters of 1996, Knwabuez .K [11] studied A(G)of p-groups. In 2000.H.R.Yassein [4] found AC(G) for n the \oplus C_P. In 2002, k. group i = 1Sekieguchi [12] studied the irreducible Artin characters of p-group and in the

Same year H. H. Abbass [10] found $\equiv^*(Dn)$.

In 2006, Abid. A. S [6] found $Ar(C_n)$ when C_n is the cyclic group of order n. In 2007, Mirza .R .N [9] found in her **1.Basic Concepts and Notations:**

In this section, we recall some basic concepts, about matrix representation, characters and Artin character which will be used in later section.

Definition (1.1): [1]

A matrix representation of a group G is a homomorphism T of G into GL (n,F), n is called the degree of matrix representation T .T is called a unit representation(principal) if T(g)=1, for all g \in G.

Definition (1.2):[2]

Let T be a matrix representation of a group G over the field F, the character χ of a matrix representation T is the mapping χ : G F defined by χ (g)= Tr(T(g)) refers to the trace of the matrix T(g) (the sum of the elements diagonal of T(g)). The degree of T is called the degree of χ .

Definition (1.3):[3]

Let H be acyclic subgroup of G and let \emptyset be a class function on H. The induced class function on G is given by:

$$\emptyset'(g) = \frac{1}{|\mathbf{H}|} \sum_{\mathbf{X} \in G} \emptyset^{\circ}(xgx^{-1}), \forall g \in \mathbf{G}$$

Where ϕ° is defined by:

$$\emptyset^{\circ}(\mathbf{h}) = \begin{cases} \emptyset^{\circ}(h) & \text{if } h \in H \\ 0 & \text{if } h \in H \end{cases}$$

Theorem (1.4):[4]

Let H be a cyclic subgroup of G and $h_1, h_2, ..., h_m$ are chosen representatives for Γ -conjugate classes, Then:

thesis Artin cokernel of the dihedral group. In this paper we find the general form of $Ar(D_n \times C_7)$ and we study $AC(D_n \times C_7)$ of the non abelian group $D_n \times C_7$ when n is an odd number. $\emptyset'(g)$

$$= \begin{cases} \frac{|C_{G}(g)|}{|C_{H}(g)|} \sum_{k=0}^{m} \emptyset^{\circ}(h_{i}) & if \quad h_{i} \in H \cap CL(g) \\ 0 & if \quad H \cap CL(g) = \emptyset \end{cases}$$

Definition (1.5):[5]

Let G be a finite group, all characters of G induced from the principal character of cyclic subgroups of G is called Artin characters of G.

Definition (1.6):[4]

Artin characters of the finite group can be displayed in a table called Artin characters table of G which is denoted by Ar(G).

Proposition (1.7):[6]

The number of all distinct Artin characters on a group G is equal to the number of Γ -classes on G.

Definition (1.8):[1]

A rational valued character θ of G is a character whose values are in Z, which is θ (g) \in Z, for all g \in G.

Definition (1.9):[6]

Let T(G) be the subgroup of \overline{R} (G)

generated by Artin characters.T(G) is a normal subgroup of \overline{R} (G) .Then the factor abelian group \overline{R} (G)/T(G) is called Artin cokernel of G, denoted by AC(G).

Proposition (1.10):[6]

AC(G) is a finitely generated Z-module.

Theorem [Artin] (1.11):[7]

Every rational valued character of G can be written as a linear combination of Artin characters with rational coefficient.

2. The Factor Group AC(G): In this section, we use some concepts in linear algebra to study the factor group AC(G). We will give the general form of Ar $(D_n \times C_7)$ when n is an odd number. We shall study Ac(G) dihedral group D_n and $\equiv^*(D_n)$ when n is an odd number. Definition (2.1):[5] Let T(G) be the subgroup of $\overline{R}(G)$ generated by Artin characters .T(G) is a normal subgroup of $\overline{R}(G)$, then the factor abelian group $\overline{R}(G)/T(G)$ is called Artincokernel of G, denoted by AC(G). Definition (2.2): [8] Ak-th determinant divisor of M is the greatest common divisor (g.c.d)of all the k-minors of M. This is denoted by $D_k(M)$. Lemma (2.3): [8] Let M, P and W be matrices with entries in the principal ideal domain R and p, W be invertible matrices, then : $D_k(P.M.W) = D_k(M)$ Modulo the group of units of R. Theorem (2.4):[8] Let M be an $k \times k$ matrix with entries in a principal ideal domain R, then there exits matrices P and W such that : 1 - P and W are invertible. 2 - P M W = D.3 - D is a diagonal matrix. 4 -If we denote D_{ii} by d_i then there exists a natural number m ; $0 \le m \le k$ such that j > m implies $d_j = 0$ and $j \le m$ implies $d_i \neq 0$ and $1 \leq i \leq m$ $d_{i}|d_{i-1}$. Definition (2.5):[8] Let M be matrix with entries in a principal ideal domain R, equivalent to matrix D=diag $\{d_1, d_2, ..., d_m, 0, 0, ..., d_m, 0, 0, ..., d_m, 0, 0, ...$

...,0} such that $d_i|d_{i-1}$ for $1 \le j \le m$, we call D the invariant factor matrix of M and d_1, d_2, \ldots, d_m the invariant factors of M. Remark(2.6): According to the Artin theorem (1.12)there exists an invertible matrix $M^{-1}(G)$ with entries in the set of rational numbers such that: $\equiv^*(G) = M^{-1}(G)$. Ar(G) and this implies, M (G)=Ar(G). $(\equiv^*(G))^{-1}$ M(G) is the matrix expressing the T(G) basis in terms of the $\overline{R}(G)$ basis. By theorem (2.5) there exists two matrices P(G) and W(G) with a determinant ∓ 1 such that: P(G). M(G).W(G)=diag $d_1, d_2, ..., d_l$ = D (G) where $d_i = \pm D_i(G)|D_{i-1}(G)|$ and *l* is the number of **Γ**-classes. Theorem (2.7):[4] m $AC(G) = \bigoplus Z$ where $d_i = \pm$ i = 1 $D_i(G)|D_{i-1}(G)$ where m is the number of all distinct Γ -classes. Theorem(2.8):[9] If n is an odd number such that n = $p_1^{\alpha_1} . p_1^{\alpha_2} .. p_m^{\alpha_m}$, where $p_1, p_2, ..., p_m$ are distinct primes, then: $(\alpha_1 + 1).(\alpha_2 + 1)...(\alpha_m + 1) - 1$ $\bigoplus_{i=1}$ $AC(D_n) =$ \mathbf{C}_2 Proposition (2.9): [8] The rational valued characters table of the cyclic group C_{p^s} of the rank S+1 where p is a prime number which is denoted by $(\equiv^*(\mathcal{C}_{p^s}))$, is given as follows:

Γ - classes	[1]	$[r^{P^{s-1}}]$	$[r^{P^{s-2}}]$	$[r^{P^{s-3}}]$		[r ^{P2}]	[r ^P]	[r]
θ_1	$P^{s-1}(P-1)$	- P ^{s-1}	0	0	•••	0	0	0
θ_2	$P^{s-2}(P-1)$	$P^{s-2}(P-1)$	- P ^{s-2}	0		0	0	0
θ_3	$P^{s-3}(P-1)$	$P^{s-3}(P-1)$	$P^{s-3}(P-1)$	- P ^{s-3}		0	0	0
:	:	:	:	:	:	:	:	:
θ_{s-1}	P(P-1)	P(P-1)	P(P-1)	P(P-1)		P(P-1)	-P	0
θ_s	P-1	P-1	P-1	P-1		P-1	P-1	-1
θ_{s+1}	1	1	1	1	•••	1	1	1

Table (2.1)

where its rank s+1 represents the number of all distinct Γ -classes.

Remark (2.10):[8] If $n = p_1^{\alpha_1} . p_1^{\alpha_2} .. p_m^{\alpha_m}$, where $p_1, p_2, ..., p_m$ are distinct primes, then: $\equiv *(C_n) = \equiv *(Cp_1^{\alpha_1}) \otimes \equiv *(Cp_1^{\alpha_2}) \otimes ... \otimes \equiv *(Cp_m^{\alpha_m}).$ Definition (2.11):[7] The dihedral group D_n is a certain nonabelian group of order2n .It is usually thought of $a_1 = a_2 = a_1 + a_2$

thought of as a group of transformations of the Euclidean plane of regular n-polygon consisting of rotations (about the origin) with the angle $2k \pi /n$, k=0,1,2,...,n-1 and

reflections (across lines through the origin). In general we can write it as : $D_n = \{ S^j r^k : 0 \le k \le n-1, 0 \le j \le 1 \}$ which has the following properties : $r^n = 1, S^2 = 1, Sr^kS^{-1} = r^{-k}$ Definition (2.12): The group $D_n \times C_7$ is the direct product group $D_n \times C_7$, where C_7 is a cyclic group of order 7 consisting of elements $\{1, r', r^{2'}, r^{3'}, r^{4'}, r^{5'}, r^{6'}, r^{7'} \}$ with $(r')^7 = 1$. It is of order 14n.

Theorem(2.13):[10]

The rational valued characters table of D_n when n is an odd number is given as follows:

		Γ - classes of C_n [S]
	$ heta_1$	0 -*(C)
	:	$\equiv^{*}(C_{n})$
$\equiv^*(C_n)=$	θ_{s-1}	1 1 1 … 1 1 1 0
	θ_s	1
	θ_{s+1}	1 1 1 … 1 1 1 -1

Table (2.2)

Where S is the number of Γ - classes of C_n .

Theorem(2.14):

The rational valued characters table of the group $D_n \times C_7$ when n is an odd number is given as follows:

$$\equiv^*(D_n \times C_7) = \equiv^*(D_n) \otimes \equiv^*(C_7).$$

Theorem (2.15):[6]

The general form of Artin characters table of C_{p^s} when p is a prime number and s is positive integer is given by the lower Triangluer matrix:

	Γ – classes	[1]	$[r^{P^{s-1}}]$	$[r^{p^{s-2}}]$	$[r^{P^{s-3}}]$		[r]
	$ CL_{\alpha} $	1	1	1	1	•••	1
	$ C_{ps}(CL_{\alpha}) $	P ^s	P ^s	P ^s	P ^s		P ^s
$Ar(C_{ps})=$	φ'_1	P ^s	0	0	0		0
m (Cps)-	φ'_2	P ^{s-1}	P ^{s-1}	0	0		0
	φ'_3	P ^{s-2}	P ^{s-2}	P ^{s-2}	0		0
	:	:	:	:	:	:	:
	φ'_s	Р	Р	Р	Р		0
	φ'_{s+1}	1	1	1	1		1

Corollary (2.16):[4]

Let n any positive integers and $n = p_1^{\alpha_1}$ $p_1^{\alpha_2} \dots p_m^{\alpha_m}$, where p_1, p_2, \dots, p_m are distinct primes, then :

distinct primes, then : $Ar(C_n) = Ar(C_{p_1^{\alpha_1}}) \otimes Ar(C_{p_2^{\alpha_2}}) \otimes \dots \otimes Ar(C_{p_m^{\alpha_m}})$

Where \otimes is the tensor product.

Proposition (2.17):[6]

 (C_{p^s}) and W (C_{p^s}) are:

If p is a prime number and s is a positive integer , then M(Cp) is an upper triangular matrix with unite entries.

M(C_{ps})

 $\begin{bmatrix} 111 & \cdots & 1\\ 011 & \cdots & 1\\ 001 & \cdots & 1\\ \vdots \vdots & \ddots & \vdots\\ 000 & \cdots & 1 \end{bmatrix}$ Which is (s+1) x (s+1) square matrix Proposition (2.18):[2] The general form of matrices P LO 0 0 0 1 which is $(s+1)\times(s+1)$ square matrix and W $(C_{p^s}) = I_{s+1}$ where I_{s+1} is an identity matrix and $D(Cp^{s}) = diag\{1, 1, ..., 1\}.$ Remarks (2.19): 1- In general if $n = p_1^{\alpha_1} . p_1^{\alpha_2} ... p_m^{\alpha_m}$, such that p_1, p_2, \ldots, p_m are distinct primes and any α_i positive integers for all i = 1, 2, ..., m; then : $\mathbf{C}_{\mathbf{n}} = \mathcal{C}_{p_1^{\alpha_1}} \times \mathcal{C}_{p_2^{\alpha_2}} \times \ldots \times \mathcal{C}_{p_3^{\alpha_3}}.$

So, we can write $M(C_n)$ as:

$$M(C_n) = \begin{bmatrix} 1 \\ 1 \\ R(C_n) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

=

Where $R(C_n)$ is the matrix obtained by omitting the last row{0, 0,...,0, 1} and the last column {1,1,...,1} from the tensor product,

$$\begin{split} & \operatorname{M}\left(\mathcal{C}_{p_{1}^{\alpha_{1}}}\right) \otimes \operatorname{M}\left(\mathcal{C}_{p_{2}^{\alpha_{2}}}\right) \otimes \dots \otimes \otimes \operatorname{M}\left(\mathcal{C}_{p_{m}^{\alpha_{m}}}\right) . \operatorname{M}(\operatorname{C}_{n}) \text{ is,} \\ & 1 - (\alpha_{1}+1)(\alpha_{2}+1) \dots (\alpha_{m}+1) \times (\alpha_{1}+1)(\alpha_{2}+1) \dots (\alpha_{m}+1)) \text{ square matrix.} \\ & 2 - \operatorname{P}\left(\operatorname{C}_{n}\right) = \operatorname{P}\left(\mathcal{C}_{p_{1}^{\alpha_{1}}}\right) \otimes \operatorname{P}\left(\mathcal{C}_{p_{2}^{\alpha_{2}}}\right) \otimes \dots \otimes \operatorname{P}\left(\mathcal{C}_{p_{m}^{\alpha_{m}}}\right). \\ & 3 - \operatorname{W}\left(\operatorname{C}_{n}\right) = \operatorname{W}\left(\mathcal{C}_{p_{1}^{\alpha_{1}}}\right) \otimes \operatorname{W}\left(\mathcal{C}_{p_{2}^{\alpha_{2}}}\right) \otimes \dots \otimes \operatorname{W}\left(\mathcal{C}_{p_{m}^{\alpha_{m}}}\right). \end{split}$$

3. The Main Results

In this section we give the general form of Artin characters table of the group $D_n \times C_7$ and the cyclic decomposition of the factor group $AC(D_n \times C_7)$ when n is an odd number.

Theorem(3.1):

The Artin characters table of the group $D_n \times C_7$ when n is an odd number is given as follows :

$Ar(D_n \times C_7) =$											
Γ – classes	[1,1']	[1,r']	Г -	– clas	ses of	[S ,1']	[S,r']				
$ CL_{\alpha} $	1	1	2 2 2					n	n		
$ C_{D_n x C_7}(\mathbf{C} L_{\alpha}) $	14n	14n	7 n	7 n	••••	••••	7n	14	14		
Ф (1,1)		0 0									
Ф (1,2)		$2\operatorname{Ar}(\operatorname{C}_{n})\otimes\operatorname{Ar}(\operatorname{C}_{7})$:		
:				:	:						
Φ(l,1)				•••	:						
Φ(l,2)		0 0									
Φ(l+1,1)	7 n	0	0	••••	••••	••••	0	7	0		
Φ(l+1,2)	7 n	0	0	••••	••••	••••	0	0	7		
$\mathbf{T}_{\mathbf{a}}\mathbf{b}\mathbf{b}(3 1)$											

Table(3.1)

where l is the number of Γ -classes of C_n and $C_7 = < r >$.

<u>Proof</u>:-By theorem(2.15)

$\operatorname{Ar}(\operatorname{C}_7) =$	Γ - classes	[1']	[r']				
	$ CL_{\alpha} $	1	1				
	$ C_7(CL_{\alpha}) $	7	7				
	φ'_1	7	0				
	φ'_2	1	1				
$\mathbf{T}_{2}\mathbf{b}\mathbf{b}(2,2)$							

Table (3.2)

Each cyclic subgroup of the group $D_n \times C_7$ is either a cyclic subgroup of $C_n x C_7$ or (S,r') or $\langle (S,1') \rangle$. If H is a cyclic subgroup of $C_n x C_7$, then : $H=H_i x \langle 1' \rangle$ or $H_i x \langle r' \rangle = H_i x C_7$ for all $1 \leq i \leq l$ where l is the number of Γ classes of C_n If $H=H_i x \langle 1' \rangle$ and $x \in D_n \times C_7$ If $x \notin H$ then by theorem(1.4) $\Phi_{(1,i)}(x)=0$ for all $0 \le i \le l$ [since H $\cap CL(x) = \phi$] If $x \in H$ then either x = (1,1') or $\exists s, 0 < s < n$ such that $x = (r^7, 1')$ If x = (1,1'), then :

 $\Phi_{(i,1)}(x) = \frac{\left|C_{D_{n\times_{C_{7}}}(x)}\right|}{\left|C_{H(x)}\right|} \cdot \varphi'(x) \text{ [since } H \cap CL(x) = \{(1,1')\}\text{]},$ where φ is the principle character $= \frac{14n}{|H_i|, |<1'>|} \cdot 1 = \frac{14n}{|H_i|} = 2. \quad \frac{n}{|H_i|} \cdot 1.7 = 2 \frac{|C_{C_n}(1)|}{|C_{H_i}(1)|} \cdot \varphi(1). \quad \varphi'(1')$ $= 2. \varphi_i(1). \varphi'(1')$ If $x = (r^7, 1')$ then $\Phi_{(i,1)}(x) = \frac{\left|c_{D_{n\times_{C_{7}}}(x)}\right|}{|c_{H(x)}|} \cdot \sum_{1}^{2} \varphi'(x) \quad \text{[since H} \cap \mathsf{CL}(x) = \{(\mathsf{r}^{\mathsf{s}}, \mathsf{1}'), (\mathsf{r}^{\mathsf{-s}}, \mathsf{1}')\}]$ $= \frac{7n}{|H_{i\times<1'>}|} \cdot (1+1)$ $= \frac{7n}{|H_i|} \cdot 2$ $= 2 \cdot \frac{n}{|H_{i(r^{s})}|} \cdot 1.7 = 2 \frac{|C_{C_{n}}(r^{s})|}{|C_{H_{i}}(r^{s})|} \cdot \varphi(r^{s}) \cdot \varphi'(1') = 2 \cdot \varphi_{i}(r^{s}) \cdot \varphi'_{1}(1')$ If $H=H_ix < r' > = H_ixC_7$ let $x \in D_n \times C_7$ if $x \notin H$ then $\Phi_{(i,2)}(x) = 0$ for all $1 \le i \le l$ [since $H \cap CL(x) = \phi$] If $x \in H$ then either g=(1,1') or x=(1,r') or $\exists s, 0 < s < n$ such that $x=(r^s,r')$ If x = (1, 1') $\Phi_{(i,2)} = \frac{\left|c_{D_{n \times C_{7(x)}}}\right|}{\left|c_{W \cap 1}\right|} . \varphi(x) \quad \text{[since H} \cap CL(x) = \{(1,1')\}\text{]}$ $= \frac{14}{|H_{i\times C_{7}}|} = \frac{14n}{2|H_{i}|} = \frac{7n}{|H_{i}|} = 2 \frac{|C_{C_{n}}(1)|}{|C_{H_{i}}(1)|} \cdot \varphi(1) = 7 \cdot \varphi_{i}(1) \cdot \varphi_{2}'(1)$ If x=(1,r') then $\Phi_{(i,2)}(x) = \frac{\left|c_{D_{n \times_{C_{7(x)}}}}\right|}{|c_{u(x)}|} . \varphi(x) \quad \text{[since H} \cap CL(x) = \{(1,r')\}]$ $= \frac{14}{|H_{inc}|}$ $=\frac{14n}{2|H_i|}=\frac{7n}{|H_i|}=7\frac{|C_{C_n}(1)|}{|C_{H_i}(1)|}=7.\varphi_i(1).\ \varphi_2'(r')$ If x=(r^s,r') then $\Phi_{(i,2)}(x) = \frac{\left|C_{D_{n\times_{C_{7}}}(x)}\right|}{\left|C_{U(x)}\right|} \cdot \sum_{1}^{2} \varphi'(x) \quad \text{[since } H \cap CL(x) = \{(r^{s}, r'), (r^{-s}, r')\}]$ $= \frac{7n}{|H_{i\times C_{7}}|} (1+1) = \frac{14n}{2|H_{i}|} = \frac{7n}{|H_{i}|} = 2 \frac{|C_{C_{n}}(\mathbf{r}^{s})|}{|C_{H_{i}}(\mathbf{r}^{s})|} \cdot \varphi(\mathbf{r}^{s}) \cdot \varphi_{2}'(r') = 7 \cdot \varphi_{i}(\mathbf{r}^{s}) \cdot \varphi_{2}'(r')$ If $H = \langle (S, 1') \rangle = \{ (1, 1'), (S, 1') \}$ then: $\Phi_{(l+1,1)}((1,1')) = \frac{\left|C_{D_{n\times C_{7(1,1')}}}\right|}{\left|C_{T_{1,1'}}\right|} \cdot \varphi(x) = \frac{14n}{2} = 7n$

$$\Phi_{(l+1,1)}((1,1')) = \frac{\left| \frac{c_{D_{n\times_{C_{7(1,1')}}}}{|C_{H(S,1')}|} \cdot \varphi(x) \right| (since H \cap CL(S, 1') = \{(S, 1')\}]}{|C_{H(S,1')}|}$$

$$= \frac{14}{2} = 7$$
Otherwise
$$\Phi_{(l+1,1)}(x) = 0 \text{ for all } x \in D_n \times C_7 \text{ ,[since } x \notin H]$$
If $H = \langle (S,r') \rangle = \{ (1,1'), (S,r')\}$

$$\Phi_{(l+1,2)}((1,1')) = \frac{\left| \frac{c_{D_{n\times_{C_{7(1,1')}}}}{|C_{H(1,1')}|} \cdot \varphi(1,1') \right|}{|C_{H(1,1')}|} \cdot \varphi(1,1') \text{ [since } H \cap CL((1,1')) = \{ (1,1')\}]$$

$$= \frac{14n}{2} \cdot 1 = 7n$$

$$\Phi_{(l+1,2)}((S,r')) = \frac{\left| \frac{c_{D_{n\times_{C_{7(S,r')}}}}{|C_{H(S,r')}|} \right|}{|C_{H(S,r')}|} \cdot \varphi(S,r') = \frac{14}{2} \cdot 1 = 7$$
Otherwise $\Phi_{(n+1,2)}((S,r')) = \frac{\left| \frac{c_{D_{n\times_{C_{7(S,r')}}}}{|C_{H(S,r')}|} \right|}{|C_{H(S,r')}|} \cdot \varphi(S,r') = \frac{14}{2} \cdot 1 = 7$

Otherwise $\Phi_{(l+1,2)}(x) = 0$ for all $x \in D_n \times C_7$ since $H \cap CL(x) = \phi \blacksquare$ **Proposition (3.2):**

If $n = p_1^{\alpha_1} . p_1^{\alpha_2} ... p_m^{\alpha_m}$ where $p_1, p_2, ..., p_m$ are distinct primes and $p_i \neq 2$ for all $1 \le i \le m$ and α_i any positive integers, then:

	Γ					1	1	1	ן1
	2R(C	$(n) \times$	$M(C_7)$			1	0	1	0
						1	1	1	1
$M(D_{a})$:	:	:	:
$M(D_{nxC7}) =$	0	0	•••	•••	0	1	1	1	1
	0	0	•••	•••	0	1	0	1	0
	1	1 1	•••	•••	1	1	1	0	0
	- I	-		•••	1	1	0	0	1J
which is $2[(\alpha_1+1).(\alpha_2+1)(\alpha_2+1)]$	α _m +1) +1]	\mathbf{x} 2 [(α_1 -	+1).(a	2 +1)	(α ,	n +1) ·	+1]	square

Proof:

matrix.

By theorem(3.1) we obtain the Artin characters table $\operatorname{Ar}(D_{n \times c_7})$ and from theorem(1.11) we find the rational valued characters table $\equiv^*(D_{n \times c_7})$.

Thus by the definition of M(G) we can find the 12 ix M($D_{n \times c_7}$):

which is $2[(\alpha_1+1).(\alpha_2+1)...+1]x2[(\alpha_1+1).(\alpha_2+1)...+1]$ square matrix.

Proposition (3.3): If $n = p_1^{\alpha_1} p_m^{\alpha_m}$ such that g.c.d(P_i,P_j)=1 and P_i \neq 2 are prime numbers and α_i any positive integers, then:

and

Proof:

By using theorem(2.5) and taking the form $M(D_n \times C_7)$ from proposition(3.2) and the above forms of $P(D_n \times C_7)$ and $W(D_n \times C_7)$ then we have

D(D_n×C₇)=diag{2,2,2,...,-2,1,1,1} Which is $2[(\alpha_1+1).(\alpha_2+1)...(\alpha_m+1)+1]x2[(\alpha_1+1).(\alpha_2+1)...(\alpha_m+1)+1]$ square matrix.

Theorem (3.4):

If $n = p_1^{\alpha_1} . p_1^{\alpha_2} p_m^{\alpha_m}$ where $p_1, p_2, ..., p_m$ are distinct prime numbers such that $P_i \neq 2$ and α_i any positive integers for all $i, 1 \le i \le m$, then the cyclic decomposition $AC(D_{n \times c_7})$ is :

$$2((\alpha_{1} + 1).(\alpha_{2} + 1)...(\alpha_{m} + 1)) - 1$$
$$AC(D_{n \times c_{7}}) = \bigoplus_{i=1}^{Q} C_{2}$$
$$i = 1$$
$$C_{2}$$
$$AC(D_{n \times c_{7}}) = \bigoplus_{i=1}^{Q} AC(D_{n})^{\bigoplus} C_{2}$$

Proof:

From proposition (3.3) we have $P(D_{n \times c_7}) . M(D_{n \times c_7}) = diag\{2, 2, 2, ..., -2, 1, 1, 1\} = \{d_1, d_2, ..., d_n\}$ $\{ d_{2((\boldsymbol{\alpha_{1+1}}).(\boldsymbol{\alpha_{2+1}}).(\boldsymbol{\alpha_{3+1}})...(\boldsymbol{\alpha_{m+1}})) - 1)}, d_{2((\boldsymbol{\alpha_{1+1}}).(\boldsymbol{\alpha_{2+1}}).(\boldsymbol{\alpha_{3+1}})...(\boldsymbol{\alpha_{m+1}})) - 1)}, d_{2((\boldsymbol{\alpha_{1+1}}).(\boldsymbol{\alpha_{2+1}}).(\boldsymbol{\alpha_{3+1}})...(\boldsymbol{\alpha_{m+1}}))) + 1} d_{2((\boldsymbol{\alpha_{1+1}}).(\boldsymbol{\alpha_{2+1}}).(\boldsymbol{\alpha_{3+1}})...(\boldsymbol{\alpha_{m+1}})) + 1} d_{2((\boldsymbol{\alpha_{1+1}}).(\boldsymbol{\alpha_{2+1}}).(\boldsymbol{\alpha_{3+1}})...(\boldsymbol{\alpha_{m+1}}))) + 2} \}.$ By theorem (2.8) we get

From theorem(2.9) we have :

$$AC(D_{n \times c_7}) = \bigoplus_{i=1}^{2} AC(D_n)^{\bigoplus} C_2$$

Example (3.6):

To find the cyclic decomposition of the groups $AC(D_{12167 \times C_7}))$, $AC(D_{11692487 \times C_7}))$ and $AC(D_{222157253 \times C_7}))$. We can use above theorem :

$$2(3 + 1) - 1 \quad 7 \quad 2$$

$$1-AC(D_{12167 \times C_{7}}) = AC(23^{3} \times C_{7}) = \bigoplus_{i=1}^{2} C_{2} = \bigoplus_{i=1}^{2} AC(D_{23^{3}}) \oplus C_{2}.$$

$$i = 1 \quad i = 1 \quad i = 1$$

$$2((3 + 1). (2 + 1)) - 1 \quad 2$$

$$2-AC(D_{11692487 \times C_{7}}) = AC(D_{23^{3}.31^{2}} \times c_{7}) = \bigoplus_{i=1}^{2} C_{2} \oplus C_{2}$$

$$i = 1 \quad i = 1$$

$$2 \oplus_{i=1}^{2} AC(D_{23^{3}.31^{2}}) \oplus C_{2} \quad 15$$

$$2((3 + 1). (2 + 1). (1 + 1)) - 1$$

$$3-AC(D_{222157253 \times C_{7}}) = AC(D_{23^{3}.31^{2}.19} \times c_{7}) = \bigoplus_{i=1}^{2} C_{2}$$

$$i = 1$$

$$= \bigoplus_{i=1}^{47} C_2 = \bigoplus_{i=1}^{2} AC(D_{23^3.31^2.19})^{\bigoplus} C_2$$

References

[1] Culirits . C and.Reiner . I ,"Methods of Representation Theory with Appcation to Finite Groups and Order", John wily & sons, New york, 1981. [2] A. M, Basheer "Representation Theory of Finite Groups" ,AIMS, South Africa , 2006.

[3] J Moori, "Finite Groups and Representation Theory", University of Kawzulu–Natal, 2006. [4] H. R Yassien ,"On ArtinCokernel of Finite Group", M.Sc. Thesis, Babylon niversity, 2000.

[5] T .Y Lam,"Artin Exponent of Finite Groups", Columbia University, New York,1968.

[6] A. S, Abid. "Artin's Characters Table of Dihedral Group for Odd Number", MSc.Thesis, university of kufa,2006.

[7] J. P Serre, "Linear Representation of Finite Groups", Springer- Verlage,1977.
[8] M. S Kirdar .M. S, "The Factor Group of The Z- Valued Class Function Modulo the Group of The Generalized Characters ",Ph. D. Thesis, University of Birmingham, 1982. [9] Mirza . R. N, "On ArtinCokernel of Dihedral Group Dn When n is An Odd Number", M.Sc. thesis, University of Kufa ,2007.

[10] H .H Abass, "On Rational of Finite Group D_n when n is an odd "Journal Babylon University, vol7, No-3, 2002.

[11] Knwabusz . K, "Some Definitions of Artin's Exponent of Finite Group", USA.National foundation Math.GR.1996.

[12] David .G, "Artin Exponent of Arbitrary Characters of Cyclic Subgroups", Journal of Algebra,61,pp.58-76,1976.

حول النواة المشارك $_{\rm n}$ حد فردي ${\bf D}_{\rm n} \times {\bf C}_7$ عندما n عدد فردي

الخلاصة

أن زمرة كل الشواخص العمومية ذات القيم الصحيحة للزمرة G على زمرة الشواخص المحتثة من الشواخص الأحادية للزمر الجزئية الدائرية AC(G) = \overline{R} (G)/T(G) تكون زمرة ابيلية منتهية وتسمى النواة المشارك – آرتن للزمرة G . إن مسألة إيجاد التجزئة الدائرية لزمرة القسمة AC(G) تم اعتبارها في هذا البحث للزمرة C₇×0 عندما n عدد فرد، وجدنا إذا كانت $p_m^{\alpha_m}$.. $p_1^{\alpha_2}$.. $p_1^{\alpha_2}$.. $p_1, p_{1,p_2,...,p_m}$ أعداد أولية مختلفة لا تساوي 2 فان: 1- (($\alpha_m + 1$)...($\alpha_m + 1$)...

$$\begin{aligned} & \operatorname{AC}(\mathbf{D}_{n}\times\mathbf{C}_{7}) = \bigoplus_{i=1}^{\bigoplus} \mathbf{C}_{2} \\ & 2 \\ & = \bigoplus_{i=1}^{\bigoplus} \operatorname{AC}(\mathbf{D}_{n}) \bigoplus_{i=1}^{\bigoplus} \mathbf{C}_{2} \\ & i = 1 \\ & \mathbf{e} \\ &$$