Direct Estimation for One-Sided Approximation By Polynomial Operators

ALAA A. AUAD
E-mail: alaa.adnan66.aa@gmail.com
UNIVERSITY OF AI-ANBAR/ FACULTY OF EDUCATION OF PURE SCIENCE/ DEPARTMENT OF MATHEMATICS MOUSA M. KHRAJAN
E-mail: mmkrady@gmail.com
UNIVERSITY OF AL-MUTHANA/ SCIENCE COLLEGE/ DEPARTMENT OF MATHEMATICS AND APPLICATIONS COMPUTER

Received 5-4-2016, Accepted 7-6-2016, \quad Published 13-10-2016

Abstract

The we characterize some positive operators for one-sided approximation of unbounded functions in weighted space $L_{p, \alpha}(X)$. We give also, an estimation of the degree of best one-sided approximation in terms averaged modulus of continuity.

Keyword: positive operators, weight space, average modulus of continuity.

1.Introduction

Continuing our previous investigations on polynomial operators for one-sided approximation to unbounded functions in weighted space (see [5]), it is the aim of this paper to develop a notion of direct estimation
polynomial approximation with
$\|f\|_{p}=\left(\int_{X}|f(x)|^{p} d x\right)^{\frac{1}{p}}<\infty$

$$
\|f\|_{p}=\left(\int_{X}|f(x)|^{p} d x\right)^{\frac{1}{p}}<\infty
$$

constructs which fits, to gather with results (see [8] and [9]) for unbounded function approximation processes.
To this end, let $\mathrm{X}=[0,1]$, we denoted by $L_{p}(X),(1 \leq \mathrm{p}<\infty)$ be the space of all real valued Lebesgue functions $f: X \rightarrow \mathbb{R}$ such that:

Now, let W be the suitable set of all weight functions on X , such that $|f(x)| \leq M \alpha(x)$, where M is positive real number and
$\alpha: X \rightarrow \mathbb{R}^{+}$weight function, which are equipped with the following norm

$$
\begin{equation*}
\|f\|_{p, \alpha}=\left(\int_{X}\left|\frac{f(x)}{\alpha(x)}\right|^{p} d x\right)^{\frac{1}{p}}<\infty \tag{2}
\end{equation*}
$$

We set
$\Delta_{h}^{k} f(x)=\left\{\begin{array}{cc}\sum_{m=0}^{k} \begin{array}{c}(-1)^{k+m}\binom{k}{m} f(x+m h) \\ 0\end{array} \text { if } x, x+m h \in X \\ \text { otherwise }\end{array}\right\}$
the $\mathrm{k}^{\text {th }}$ local modulus of continuity is denoted by

$$
\begin{equation*}
\omega_{k}(f, x, \delta)_{p, \alpha}=\sup \left\{\left|\Delta_{h}^{k} f(t)\right|, t, t+k h \in\left[x-\frac{k \delta}{2}, x+\frac{k \delta}{2}\right]\right\} \tag{4}
\end{equation*}
$$

The $\mathrm{k}^{\text {th }}$ averaged modulus is used in this paper :
$\tau_{k}(f, \delta)_{p, \alpha}=\left\|\omega_{k}(f, ., \delta)\right\|_{p, \alpha}$
Let \mathbb{N} be the set of natural numbers and \mathbb{P}_{n} the set of all algebraic polynomials of degree less than or equal to $n \in \mathbb{N}$.
For an unbounded function $f \in L_{p, \alpha}(X)$ and $n \in \mathbb{N}$, the degree of best weighted approximation and the degree of best one-weighted approximation are defined respectively by :
$E_{n}(f)_{p, \alpha}=\inf \left\{\left\|f-p_{n}\right\|_{p, \alpha} ; p_{n} \in \mathbb{P}_{n}\right\}$
$\tilde{\mathrm{E}}_{n}(f)_{p, \alpha}=\inf \left\{\left\|q_{n}-p_{n}\right\|_{p, \alpha} ; p_{n}, q_{n} \in \mathbb{P}_{n} \operatorname{and}_{n}(x) \leq f(x) \leq q_{n}(x)\right\}$
It easy to verify that there are not linear operators for one-sided approximation in X. Some non-linear construction have been proposed in [3] and [6].
Let us consider the step function
$\psi(x)=\left\{\begin{array}{ll}0 & \text { if }-1<x \leq 0 \\ 1 & \text { if } \quad 0<x \leq 1\end{array}\right\}$
fix two sequences of polynomials $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}, p_{n}, q_{n} \in \mathbb{P}_{n}$ such that
$p_{n}(x) \leq \psi(x) \leq q_{n}(x), x \in[-1,1]$
and $C_{n}=\left\|f-p_{n}\right\|_{p, \alpha} \rightarrow 0, p=1$
For the first one we work in space $L_{p, \alpha}(X)$. For $1 \leq p<\infty$, we construct two different sequences of operators, for $x \in X, n \in \mathbb{N}$ and $f \in L_{p, \alpha}(X)$ define
$g_{n}(f, x)=f(0)+\int_{X} p_{n}(t-x) f_{+}^{\prime}(t) d t-\int_{X} q_{n}(t-x) f_{-}^{\prime}(t) d t$
and
$G_{n}(f, x)=f(0)+\int_{X} q_{n}(t-x) f_{+}^{\prime}(t) d t-\int_{X} p_{n}(t-x) f_{-}^{\prime}(t) d t$
it is clear $g_{n}(f), G_{n}(f) \in \mathbb{P}_{n}$, we will prove that
$g_{n}(f) \leq f(x) \leq G_{n}(f), x \in X$ and both
$\left\|f-g_{n}(f)\right\|_{p, \alpha} \leq C_{n}\left\|f^{\prime}\right\|_{p, \alpha}$ and $\left\|f-G_{n}(f)\right\|_{p, \alpha} \leq C_{n}\left\|f^{\prime}\right\|_{p, \alpha}$, where C_{n} is given in (10).

In the second case, for function $f \in L_{p, \alpha}(X)$, we construct operators :
$P_{t}(f, x)=\int_{X}[f((1-t) x+t u)-\omega(f,(1-t) x+t u, t)] d u$
and
$Q_{t}(f, x)=\int_{X}[f((1-t) x+t u)+\omega(f,(1-t) x+t u, t)] d u$
It is clear that $P_{t}(f, x), Q_{t}(f, x) \in \mathbb{P}_{n}$ and therefore we can define
$L_{n, t}(f, x)=g_{n}\left(P_{t}(f), x\right)$
and
$M_{n, t}(f, x)=G_{n}\left(Q_{t}(f), x\right)$
where g_{n} and G_{n} are given by (11) and (12) respectively. We will prove that $L_{n, t}(f, x) \leq f(x) \leq M_{n, t}(f, x), x \in X \quad$ and present the degree of best one-sided approximation of unbounded functions by operators $L_{n, t}(f, x)$ and $M_{n, t}(f, x), x \in X$ in terms averaged modulus of continuity.

In the last years there has been interest in studying open problems related to onesided approximations (see [1], [2]).
We point out that other operators for onesided approximations have constructed in [7].
In particular, the operators presented in [6] yield the non-optimal rate $O\left(\tau\left(f, \frac{1}{\sqrt{n}}\right)\right)$ where is ones consider in [4] give the optimal rate, but without an explicit constant. The paper is organized as follows. In section (3) we calculate the degree of best one-sided approximation $\max \left\{\left\|P_{t}^{\prime}\right\|_{p},\left\|Q_{t}{ }^{\prime}\right\|\right\} \leq \frac{3}{\pi} \tau(f, t)_{p}$.
of unbounded functions by mean of the operators define (13) and (14). Finally in the some section, we consider the degree of the best one-sided approximation by mean of the operators defined in (15) and (16).
2.Auxiliary results

We shall the following auxiliary lemmas:
Lemma 2.1 : [3]
If $\quad f \in \mathcal{R}[0,1], \quad t \in(0,1) \quad$ and functions $P_{t}(f), Q_{t}(f)$ are defined by (13) and (14) respectively, then $P_{t}(f) \leq$ $f(x) \leq Q_{t}(f), x \in[0,1]$ and

Lemma 2.2 : [3]

Let $\psi(x)$ be given in (8). For $x \in[-1,1]$ define $p_{n}(x)=T_{n}^{-}(\arccos x)$ and $q_{n}(x)=$ $T_{n}^{+}(\arccos x)$. Then
$p_{n}, q_{n} \in \mathbb{P}_{n}, p_{n}(f) \leq \psi(x) \leq q_{n}(f), x \in[-1,1]$ and
$\left\|q_{n}-p_{n}\right\|_{p,[-1,1]} \leq \frac{4 \pi^{2}}{n+2}$.
Let us formulate and prove the following basic lemmas, which we shall use to prove our main results.

Lemma 2.3 :

For $f \in L_{p, \alpha}(X),(1 \leq \mathrm{p}<\infty), n \in \mathbb{N}$ and $n \geq 2$. Let $g_{n}(f)$ and $G_{n}(f)$ be as (11) and (12) respectively. Then $g_{n}(f), G_{n}(f) \in \mathbb{P}_{n}$ and $g_{n}(f, x) \leq f(x) \leq G_{n}(f, x), x \in X$.

Proof :

From (9), (10), (11) and (12), it is clear that $g_{n}(f), G_{n}(f) \in \mathbb{P}_{n}$. Since
$g_{n}(f, x)=f(0)+\int_{X} p_{n}(t-x) f_{+}^{\prime}(t) d t-\int_{X} q_{n}(t-x) f^{\prime}(t) d t$
where $p_{n}, q_{n} \in \mathbb{P}_{n}$, such that $p_{n}(x) \leq f(x) \leq q_{n}(x), x \in[-1,1]$ and
$\left\|p_{n}-q_{n}\right\|_{p} \rightarrow 0$
We have $, p_{n}(x) \leq \psi(x) \leq q_{n}(x), x \in[-1,1]$,
thus

$$
\begin{aligned}
& g_{n}(f, x) \leq f(0)+\int_{X} \psi(t-x) f_{+}^{\prime}(t) d t-\int_{X} \psi(t-x) f_{-}^{\prime}(t) d t \\
& \quad=f(0)+\int_{X} \psi(t-x) f^{\prime}(t) d t=f(0)+f(x)-f(0) \\
& \quad=f(x)
\end{aligned}
$$

Also,
$f(x)=f(0)+f(x)-f(0)=f(0)+\int_{X} f^{\prime}(t) d t$

$$
\begin{aligned}
& =f(0)+\int_{X} \psi(t-x) f^{\prime}(t) d t \\
& \quad=f(0)+\int_{X} \psi(t-x) f_{+}^{\prime}(t) d t-\int_{X} \psi(t-x) f_{-}^{\prime}(t) d t \\
& \quad \leq f(0)+\int_{X} p_{n}(t-x) f_{+}^{\prime}(t) d t-\int_{X} q_{n}(t-x) f_{-}^{\prime}(t) d t \\
& =G_{n}(f, x)
\end{aligned}
$$

Lemma 2.4 :

For $f \in L_{p, \alpha}(X),(1 \leq \mathrm{p}<\infty), n \in \mathbb{N}$ and $n \geq 2$. Let $g_{n}(f)$ and $G_{n}(f)$ be as (11) and (12) respectively. Then

$$
\max \left\{\left\|f-g_{n}(f)\right\|_{p, \alpha},\left\|f-G_{n}(f)\right\|_{p, \alpha}\right\} \leq C_{n}\left\|f^{\prime}\right\|_{p, \alpha}
$$

Proof :

We have
$\left|f(x)-g_{n}(f, x)\right| \leq \int_{-x}^{1-x}\left(q_{n}(y)-p_{n}(y)\right)\left|f^{\prime}(x+y)\right| d y$,
putting $\xi_{n}(y)=q_{n}(y)-p_{n}(y)$ and by using Holder's inequality

$$
\begin{aligned}
\left(\left\|f-g_{n}(f)\right\|_{p, \alpha}\right)^{p} & \leq \int_{X}\left|\frac{\int_{-x}^{1-x} \xi_{n}(y)\left|f^{\prime}(x+y)\right| d y}{\alpha(x)}\right|^{p} d x \\
& \leq \int_{X}\left(\left|\int_{-x}^{1-x} \xi_{n}(y) d y\right|^{p-1}\right)\left(\left|\frac{\int_{-x}^{1-x} \xi_{n}(y)\left|f^{\prime}(x+y)\right|^{p} d y}{\alpha(x)}\right|\right) d x \\
& \leq\left(\int_{-1}^{1}\left|\xi_{n}(w)\right|^{p-1} d w\right)\left(\int_{X}\left|\frac{f^{\prime}(z)}{\alpha(z)}\right|^{p}\left(\int_{z-1}^{z} \frac{\xi_{n}(y)}{\alpha(y)} d y\right) d z\right) \\
& \leq\left(\int_{-1}^{1}\left|\xi_{n}(w)\right|^{p} d w\right)\left(\int_{X}\left|\frac{f^{\prime}(z)}{\alpha(z)}\right|^{p} d z\right)
\end{aligned}
$$

Thus
$\left\|f-g_{n}(f)\right\|_{p, \alpha} \leq\left(\int_{-1}^{1}\left|\xi_{n}(w)\right|^{p} d w\right)^{\frac{1}{p}}\left(\int_{X}\left|\frac{f^{\prime}(z)}{\alpha(z)}\right|^{p} d z\right)^{\frac{1}{p}}$, hence
$\left\|f-g_{n}(f)\right\|_{p, \alpha} \leq\left\|\xi_{n}\right\|_{p}\left\|f^{\prime}\right\|_{p, \alpha}=C_{n}\left\|f^{\prime}\right\|_{p, \alpha}$.
Similarly, we prove that, $\left\|f-G_{n}(f)\right\|_{p, \alpha} \leq C_{n}\left\|f^{\prime}\right\|_{p, \alpha}$.

3. Main results :

Let us explicitly formulate direct theorem estimates of the degree of best approximation with constraints of unbounded functions by polynomial operators.
Theorem 3.1 :
For $f \in L_{p, \alpha}(X),(1 \leq \mathrm{p}<\infty), n \in \mathbb{N}$ and $n \geq 2$. Let $P_{t}(f)$ and $Q_{t}(f)$ be as (13) and (14) respectively. Then

$$
\begin{aligned}
& \max \left\{\left\|f-P_{t}(f)\right\|_{p, \alpha},\left\|f-Q_{t}(f)\right\|_{p, \alpha}\right\} \leq C_{1}(t, p) \tau(f, t)_{p, \alpha} \text { and } \\
& \quad \tilde{\mathrm{E}}_{n}(f)_{p, \alpha} \leq C_{k}(t, p) \tau(f, t)_{p, \alpha}
\end{aligned}
$$

Proof :

As usual, take q such that $\frac{1}{p}+\frac{1}{q}=1$, from (13), (14) and Holder's inequality, we obtain

$$
\begin{aligned}
\left(t\left\|f-P_{t}(f)\right\|_{p, \alpha}\right)^{p} & =t^{p} \int_{X}\left|\frac{f(x)-P_{t}(f, x)}{\alpha(x)}\right|^{p} d x \\
& \leq t^{p} \int_{X}\left|\frac{Q_{t}(f, x)-P_{t}(f, x)}{\alpha(x)}\right|^{p} d x \\
& \leq 2^{p} t^{p} \int_{X} \int_{0}^{t}\left|\frac{\omega(f,(1-t) x+t u, t)}{\alpha((1-t) x)}\right|^{p} d u d x
\end{aligned}
$$

Put $y=(1-t) x$ implies $d y=(1-t) d x$
$\left(t\left\|f-P_{t}(f)\right\|_{p, \alpha}\right)^{p} \leq \frac{2^{p} t^{p}}{1-t} \int_{0}^{t} \int_{u}^{1-t+u}\left|\frac{\omega(f, y, t)}{\alpha(y)}\right|^{p} d y d u$

$$
\begin{aligned}
& \leq \frac{2^{p} t^{\frac{p}{q}}}{1-t} \int_{0}^{t} \int_{X}\left|\frac{\omega(f, y, t)}{\alpha(y)}\right|^{p} d y d u \\
& \leq \frac{2^{p} t^{\frac{p}{q}+1}}{1-t} \int_{X}\left|\frac{\omega(f, y, t)}{\alpha(y)}\right|^{p} d y
\end{aligned}
$$

thus

$$
\begin{aligned}
\left\|f-P_{t}(f)\right\|_{p, \alpha} & \leq \frac{2}{(1-t)^{\frac{1}{p}}}\left(\int_{X}\left|\frac{\omega(f, y, t)}{\alpha(y)}\right|^{p} d y\right)^{\frac{1}{p}} \\
& =\frac{2}{(1-t)^{\frac{1}{p}}}\|\omega(f, ., t)\|_{p, \alpha}=\frac{2}{(1-t)^{\frac{1}{p}}} \tau(f, t)_{p, \alpha}
\end{aligned}
$$

since $\frac{2}{(1-t)^{\frac{1}{p}}}$ constant depending on t and p, then
$\left\|f-P_{t}(f)\right\|_{p, \alpha} \leq C_{1}(t, p) \tau(f, t)_{p, \alpha}$.
Similarly, we can prove $\left\|f-Q_{t}(f)\right\|_{p, \alpha} \leq C_{1}(t, p) \tau(f, t)_{p, \alpha}$.
We go to the following inequality :

$$
\begin{aligned}
& \tilde{\mathrm{E}}_{n}(f)_{p, \alpha} \leq\left\|Q_{t}(f)-P_{t}(f)\right\|_{p, \alpha} \leq\left\|f-Q_{t}(f)\right\|_{p, \alpha}+\left\|f-P_{t}(f)\right\|_{p, \alpha} \\
& \quad \leq C_{k}(t, p) \tau(f, t)_{p, \alpha}
\end{aligned}
$$

Theorem 3.2:
For $f \in L_{p, \alpha}(X),(1 \leq \mathrm{p}<\infty), n \in \mathbb{N}$. Let $L_{n, t}(f)$ and $M_{n, t}(f)$ be as (13) and (14) respectively. Then

$$
\begin{aligned}
& L_{n, t}(f) \leq f(x) \leq M_{n, t}(f), \quad x \in X \\
& \max \left\{\left\|f-L_{n, t}(f)\right\|_{p, \alpha},\left\|f-M_{n, t}(f)\right\|_{p, \alpha}\right\} \leq\left(C_{1}(t, p)+\frac{3 C_{n}}{t}\right) \tau(f, t)_{p, \alpha}
\end{aligned}
$$

and

$$
\tilde{\mathrm{E}}_{n}(f)_{p, \alpha} \leq\left(C_{k}(t, p)+\frac{6 C_{n}}{t}\right) \tau(f, t)_{p, \alpha}
$$

Proof :
Let $P_{t}(f)$ and $Q_{t}(f)$ be as in (13) and (14) respectively. Also, from (15) and (16), it is clear $L_{n, t}(f), M_{n, t}(f) \in \mathbb{P}_{n}$.
Moreover, from (15), (16), theorem 3.1, lemma 2.3, lemma 2.4 and lemma 2.1, we have

$$
\begin{aligned}
L_{n, t}(f, x) & =g_{n}\left(P_{t}(f, x)\right) \leq\left(P_{t}(f, x) \leq f(x)\right. \\
& \leq Q_{t}(f, x) \leq G_{n}\left(Q_{t}(f, x)\right)=M_{n, t}(f, x), \quad x \in X
\end{aligned}
$$

Also,

$$
\left\|f-L_{n, t}(f)\right\|_{p, \alpha} \leq\left\|f-P_{t}(f)\right\|_{p, \alpha}+\left\|P_{t}(f)-L_{n, t}(f)\right\|_{p, \alpha}
$$

$$
\begin{aligned}
& \leq C_{1}(t, p) \tau(f, t)_{p, \alpha}+\left\|f-g_{n}\left(P_{t}(f)\right)\right\|_{p, \alpha} \\
& \leq C_{1}(t, p) \tau(f, t)_{p, \alpha}+C_{n}\left\|P_{t}^{\prime}(f)\right\|_{p, \alpha} \\
&= C_{1}(t, p) \tau(f, t)_{p, \alpha}+C_{n}\left\|\frac{P_{t}^{\prime}(f, .)}{\alpha(.)}\right\|_{p} \\
& \leq C_{1}(t, p) \tau(f, t)_{p, \alpha}+\frac{3 C_{n}}{t} \tau\left(\frac{f}{\alpha}, t\right)_{p} \\
&=C_{1}(t, p) \tau(f, t)_{p, \alpha}+\frac{3 C_{n}}{t} \tau(f, t)_{p, \alpha} \\
&=\left(C_{1}(t, p)+\frac{3 C_{n}}{t}\right) \tau(f, t)_{p, \alpha}
\end{aligned}
$$

The estimate for $\left\|f-M_{n, t}(f)\right\|_{p, \alpha}$ follows analogously.
Thus

$$
\begin{gathered}
\tilde{\mathrm{E}}_{n}(f)_{p, \alpha} \leq\left\|M_{n, t}(f)-L_{n, t}(f)\right\|_{p, \alpha} \\
\leq\left\|f-L_{n, t}(f)\right\|_{p, \alpha}+\left\|f-M_{n, t}(f)\right\|_{p, \alpha} \\
\leq 2\left(C_{1}(t, p)+\frac{3 C_{n}}{t}\right) \tau(f, t)_{p, \alpha} \\
\leq\left(C_{k}(t, p)+\frac{6 C_{n}}{t}\right) \tau(f, t)_{p, \alpha}
\end{gathered}
$$

Theorem 3.3 :
For $f \in L_{p, \alpha}(X),(1 \leq \mathrm{p}<\infty), n \in \mathbb{N}, n \geq 2$. Let p_{n} and q_{n} be the sequence of polynomials constructed as in (9), set
$Z_{n}(f)=L_{n, \frac{1}{n}}(f)$ and $\mathcal{H}_{n}(f)=M_{n, \frac{1}{n}}(f)$, where
$L_{n, \frac{1}{n}}(f)$ and $M_{n, \frac{1}{n}}(f)$ are given in (15) and (16) respectively. Then

$$
Z_{n}(f, x) \leq f(x) \leq \mathcal{H}_{n}(f, x), \quad x \in X
$$

$\max \left\{\left\|f-Z_{n}(f)\right\|_{p, \alpha},\left\|f-\mathcal{H}_{n}(f)\right\|_{p, \alpha}\right\} \leq\left(C_{1}(t, p)+\frac{3 C_{n}}{t}\right) \tau\left(f, \frac{1}{n}\right)_{p, \alpha}$ and

$$
\tilde{\mathrm{E}}_{n}(f)_{p, \alpha} \leq 2\left(C_{k}(t, p)+\frac{12 n \pi^{2}}{n+2}\right) \tau\left(f, \frac{1}{n}\right)_{p, \alpha}
$$

Proof:

From (15) and (16) with $t=\frac{1}{n}$ and $n \geq 2$, we obtain
$L_{n, \frac{1}{n}}(f, x)=g_{n}\left(P_{\frac{1}{n}}(f, x)\right)$ and $M_{n, \frac{1}{n}}(f, x)=G_{n}\left(Q_{\frac{1}{n}}(f, x)\right)$ where
$P_{\frac{1}{n}}(f), Q_{\frac{1}{n}}(f) \in \mathbb{P}_{n}$. So $g_{n}\left(P_{\frac{1}{n}}(f)\right), G_{n}\left(Q_{\frac{1}{n}}(f)\right) \in \mathbb{P}_{n}$
From lemma 2.3, we have $g_{n}(f, x) \leq f(x) \leq G_{n}(f, x), \quad x \in X$.
Hence, $Z_{n}(f, x) \leq f(x) \leq \mathcal{H}_{n}(f, x), \quad x \in X$.
We need an estimate for $\left\|f-Z_{n}(f)\right\|_{p, \alpha}$ one has :
From (15), lemma 2.2 and theorem 3.2

$$
\begin{aligned}
\left\|f-z_{n}(f)\right\|_{p, \alpha} & =\left\|f-L_{n, \frac{1}{n}}(f)\right\|_{p, \alpha} \leq\left(C_{k}(t, p)+\frac{3 C_{n}}{\frac{1}{n}}\right) \tau\left(f, \frac{1}{n}\right)_{p, \alpha} \\
& \leq\left(C_{k}(t, p)+\frac{12 n \pi^{2}}{n+2}\right) \tau\left(f, \frac{1}{n}\right)_{p, \alpha}
\end{aligned}
$$

Similarly, we can prove
$\left\|f-\mathcal{H}_{n}(f)\right\|_{p, \alpha} \leq\left(C_{k}(t, p)+\frac{12 n \pi^{2}}{n+2}\right) \tau\left(f, \frac{1}{n}\right)_{p, \alpha}$.
Thus

$$
\begin{aligned}
\tilde{\mathrm{E}}_{n}(f)_{p, \alpha} & \leq\left\|\mathcal{H}_{n}(f)-Z_{n}(f)\right\|_{p, \alpha} \\
& \leq\left\|\mathcal{H}_{n}(f)-f\right\|_{p, \alpha}+\left\|f-Z_{n}(f)\right\|_{p, \alpha} \\
& \leq 2\left(C_{k}(t, p)+\frac{12 n \pi^{2}}{n+2}\right) \tau\left(f, \frac{1}{n}\right)_{p, \alpha}
\end{aligned}
$$

References

[1]Bustamante, J. and Quesada, J.M., (2012), "Polynomial operators for onesided approximation to functions in $W_{p}^{r}[0,1] "$, J. Math. Analy. and Appl., 393, pp. 517-525.
[2]Bustamante, J. and Quesada, J.M., (2012),"Best one-sided L_{1} approximation to the Heaviside and functions", J. Appro. Theory, 164(6), pp. 791-802.
[3]Bustamante, J., Quesada, J.M. and Reinaldo, M.C., (2014), "Polynomial operators for one-sided L_{p} approximation to Riemann integrable functions", J. inequ. And Appl., 494.
[4]Hristov, V.H. and Ivanov, K.G., (1988), "Operators for one-sided approximation of functions", In: Constructive theory of functions 87, proc. Intern. Conference, Varna, Sofia, PP. 222-232.
[5]Jassim, K. S. and Alaa. A.A., (2014),"On best one-sided approximation by interpolation polynomials in spline $\mathrm{L}_{\mathrm{p}, \mathrm{w}}$ (X)",J.Mat. Theory and Modl.,Vol.4,No.4, pp.95-102.
[6]Lenze, B., (1988)," Operators for onesided approximation by algebraic polynomials", J. Approx. Theory, 54,pp. 169-179.
[7]Motornyi, V.P. and Pas'ko, A.N., (2004)," On the best one-sided approximation of some classes of differentiable functions in L_{1} ", J. Approx. Theory,10(1-2), pp. 159-169.
[8] Motornyi,V.P.and Pas'ko,A.N., (2010),' On one-sided approximation of a step by algebraic polynomials in the mean",J.Ukra. Math., 62(3), pp. 476-482. [9]Taikov, L.V., (2000),"One-sided approximation of functions", Math. Notes, 67(1),pp.108-111.

```
التقاير المباشر للتقريب الاحادي الجانب بواسطة مؤثرات متعددات الحدود
    علاء عدنان عواد
    جامعة الانبار/ كلية التربية لللعوم الصرفة/ قسم الرياضيات
    (E-mail : alaa.adnan66.aa@gmail.com)
        موسى مكي خريجان
        جامعة المثنى/ كلية العلوم/ قسم الرياضيات وتطبيقات الحاسوب
    E-mail: mmkrady@gmail.com
```

نقام في هذا البحث بحض المؤثرات الموجبة للتقريب احادي الجانب للدوال الغير المقيدة في فضاء الوزن

للاستمر ارية.

