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Abstract 

Doping a part of the optical fiber core by (Er3+ ) ions in presence of external pumping power 

will lead to form the erbium-doped fiber amplifier (EDFA).The performance of this optical amplifier 

depends on (the power and the wavelength of the pumping laser, the power and wavelength of the input 

signal, amplifier length, ion concentration). These parameters will affect the characteristics of EDFA 

such as amplifier gain, gain saturation, noise figure and output power. However, these characteristics 

can be determined by solving the EDFA propagation and rate equations. The solution of these 

equations of two-level laser medium can be done numerically. In this paper, we are proposed a novel  

method to solve these equations. The reconstructed results are perfectly coincided the well known 

numerical results.  
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1. Introduction   

In 2012, H. Sariri, et al [1] studied the 

effect of ASE on the gain modulation in 

EDFAs. The derivation of an analytical model 

for EDFA over modulation response has been 

presented. 

In 2013, P. Sharma and et al [2] 

discussed various gain flattening techniques. 

EDFA is widely used amplifier due to its 

transient suppression, wideband variable gain 

operation. Electronic feedback control is 

designed for achieving flat gain at the top of 

required gain range. 

EDFA is fiber amplifier which use the 

rare-earth elements as a  gain medium by 

doping the fiber core with erbium ions. 

Although doped-fiber amplifiers were studied 

as early as 1964, their use became practical 

only 25 years later [3]. The erbium-doped has 

made a tremendous progress. It was created a 

revolution in long distance optical 

communication systems. EDFA made by 

doping the silica fiber with erbium ions can 

operate in a broad range within the 1550 nm 

window at which the attenuation of silica fiber 

is minimum and therefore it is ideal for the 

optical fiber communication systems operating 

at this wavelength range. These active fibers are 

finding diverse applications in optical 

amplifiers, lasers, switches, and a variety  of  

nonlinear devices [4]. The amplifier is modeled 

as a three level system having three populations 

of erbium atoms are of interest here: i) the 

ground state with population density N1; ii) 

metastable level with population density N2, 

and iii) pump level with population density N3. 

In practice, transition from  level 3 to level 2 

are much more likely than transitions back to 

the ground state (level 3 to level 1) or the rate 

of spontaneous emission from state 2. Under 

this assumption, N3≈0 [5] . 

 

Fig.(1): Energy level diagram  

of erbium ions [6]. 

 Here the three-level system has been 

reduced to an effective two-level system [7]. 

Population inversion is achieved by injecting 

power into the system through an external 

energy source, which is known as pumping. 

Pumping will excite atoms into the upper 

energy level 2 [8,9]. Under the assumption that 

the pump wavelength is in the 1480 nm region. 

The EDFA can be modeled using the 

propagation and rate equations for a 

homogeneous two-level laser medium [10]. The 
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stimulated absorption and emission rates 

between the ground state and the metastable 

state are denoted by 
12W  and 

21W , respectively. 

Stimulated absorption rate 
12W , stimulated 

emission rate 
21W  and transition rates such as 

pump rate 
12R  are defined as [11] 
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where sase  ,
 
are the emission and absorption 

cross sections at signal frequency ss c   , 

and pa
 
is the absorption cross section at pump 

frequency pp c   , h  is the Plank's constant, 

c  is the speed of light in vacuum, effA is the 

effective cross-sectional area of the distribution 

of erbium ions, sP and pP  are the signal and 

pump powers, 

ASEP  and 

ASEP  are the forward 

and backward spontaneous emission power,  

and s  
and p are the confinement factors of 

the signal and pump, which represents the 

overlapping of the optical mode and the 

erbium-ion distribution. Only the portion of the 

optical mode which overlaps with the erbium 

ion distribution will stimulate absorption or 

emission from the 3Er transitions. Since the 

erbium is confined to the core of the optical 

fiber, the mode intensity can more readily 

invert the erbium ions [5,11]. Spontaneous 

decay rate 21A  depends on the fluorescence 

lifetime ( spon ) of the excited energy level, 

hence, it is defined as sponA /121   [12] where 

sec10mspon  . The population densities of the 

two states, 
21 NandN , satisfy the following 

two rate equations [9] 
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where 
1N  is the population density of the 

ground state, 2N  is the population density of the 

metastable level. The terms in last equations 

represent: 112 NW Number of absorption from 

level 1 to level 2 due to the signal at s , 

221NW number of stimulated emission from 

level 2 to level 1 due to the signal at s , 

112 NR number of absorption from level 1 to 

level 2 due to the pump at p , 221NA number 

of spontaneous emission from the level 2 to 

level 1. The total erbium-ion density per unit 

volume is defined as 21 NNNt  . Steady-

state analysis is applicable when the rate of 

change of variable is much slower than the 

inherent time constants of the system. 

Mathematically, the steady-state solutions are 

obtained by setting the time derivatives in turn, 

the population densities will be [13] 
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2. Propagation Equations 

The equations that describe the 

propagation of ,,, 

ASEps PPP and 

ASEP  are 

written as bases on the Giles and Desurvire 

model [14] 
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where z is the coordinate along the EDFA, The 

signal positive (+) means a forward propagation 

beam and signal negative (-) for  backward 

propagation, 

sP  is the forward and backward 

signal power, respectively. 

pP is the pump 

power of the EDFA in forward direction, 

ASEP  

are the forward and backward  amplified 

spontaneous emission (ASE) of the EDFA, 

respectively. The second term on the right hand 

side of Eq.(10) is the spontaneous noise power 

( vhP s

o

ASE   ) of the EDFA within the EDFA 

homogeneous bandwidth ( v ) [15]. This 

bandwidth noise can be estimated from 

 



0

,/)( dvvv peakee  . Thus the two-level 

amplifier system can be fully characterized 

using Eqs.(6) to (10) that describe the 

propagation of the signal, pump and ASE along 

the EDFA. Eqs.(8) to (10) can be solved 

analytically to extracted the total amplifier gain 

G for an EDFA of length  L. In this analysis, 

the signal and ASE terms are assumed to have 

both forwards and backwards propagating 

components [16]. s
 
and p  are the absorption 

coefficients per unit length of signal and pump, 

respectively, which are defined as [14] 

tsass N   and tpap N p . These 

definitions govern the evolution of signal and 

pump powers inside an EDFA. In short fibers, 

these losses are negligible. However, they 

should be taken into account for long fibers 

specifically distributed erbium doped fiber. 

 

3. Present Analytical Model 

 There are many studies published in the 

scientific papers [8] analyzed the performance 

of EDFA according to Eqs.(8) to (10), where 

these equations were solved numerically. 

However, we propose a new analytical solution. 

We see that the behavior of the erbium ion 

concentration of level 1 and 2 is constant along 

most of the length of the amplifier ( and that is 

depends on the pump power)  after that the 

concentration decreases (for N2) or increases 

(for N1) smoothly. So, we can assume that for 

short lengths, the values of N2 and N1 are 

constants. So our model assumes that the 
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amplifier consists of   many equal short 

concatenate segments. We assumed that the 

concentrations are constant along z for each 

segment of EDFA. So these equations way be 

solved analytically. Our assumption is 

necessary to consider the differential equations 

with constant coefficient. To clarify the 

derivations, let    
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Substituting ,, BA  and C  into Eq.(8) to (10), 

yields 
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Note that, according to our assumptions, the 

parameter ,, BA  and C  will be invariant 

through each segment. Their variations are 

limited in the end points of the segments only. 

The solution of the forward pump equation in 

the concatenated sections will be  
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These equations may be generalized to yield  
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zNL  .  represents the length, where N is the 

number of segments and equals 601, )0(

pP  is 

the initial pump power that inters in the forward 

direction. It is important to note that the 

coefficients A's may be positive or negative 

depending on the operating conditions. The 

entire description of variation depends on the 

recursive solution in the concatenated  

segments. The recursion formula can be 

deduced as 
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where i is an integer number. The solution of 

the backward pump equation for the 

concatenated segments will be  
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The following recursion formula can be 

deduced 
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)0(

pP
 
is the initial pump power that inters in 

the backward direction. Using a similar 

procedure to signal propagation equations, we 

get the recursion formula  
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zB

SS
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where )0(

sP  is  the initial signal power that 

inputs in the forward direction.  

     The propagation equations that describe 



ASEP  and 

ASEP  are non-homogeneous 

differential equations and can be solved as 

following : First, for forward ASE, we have the 

solution 
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where the constant k  may be determined using 

the boundary conditions at 0z  to yield  
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Substituting Eq.(22) into (21), yields 
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The last equation may be reformed for the 

concatenated segments as  
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From these equations one can deduce the 

recursion formula
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where )0(

ASEP refers to the initial spontaneous 

emission power for the forward direction. 

Second, for backward ASE, using a similar 

steps for forward ASE, the reconstructed 

ASEP  

will be 

)1()()0( 11
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The initial value of )0(

ASEP in forward direction 

is zero and the initial value of )(LPASE

 in the 

backward direction is zero.  

 

4. Calculation of  


ASEP  

There is no problem in calculating


ASEP
 

because  the initial condition is known in z=0, 

so we can solve Eq.(23) numerically or by the 

proposed method beginning from z=0 for the 

first segment .The calculated 


ASEP of the first 

segment becomes the initial value for the 

second segment and so on. This is correct in 

using numerical methods or our proposed 

method. But when we start to calculate  


ASEP    

in the first segment  , we found that there is no 

known initial value in z=0.,so, the solution of 

Eq.(25) for


ASEP  must begin from the end of the 

fiber (z=L) because the initial value 0)(  LPASE  

. And by solving Eq.(25)  beginning from the 

last segment (N) in backward direction with 

taking the value of 0)(  LPASE  as initial value 

we get the value of )( zLPASE 
 for (N-1) 

segment . We take )( zLPASE 
 as the initial 

value to calculate the value of )2( zLPASE 
 for 

the (N-1) segment ,and so on. We are obliged to 

calculate Eqs(1-2) and the related equations 

three times. In the first one, we calculate


ASEP  

only and 

pP   , 

SP  for all segments in forward 
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direction . We put  0

ASEP for all segment. In 

the second time, we begin the calculation from 

the last segment of EDFA  using the result of 

the forward calculation to find the values of 



ASEP using 0)(  LPASE  as initial value. In the 

third time , we repeat the first calculation using 

the stored values of 


ASEP  beginning from the 

first segment in forward direction. 

 

5. Results and Discussion  

The numerical method was simulated by 

the Matlab program. The EDFA is divided into 

many segments, for example N=601 segments, 

each of them with length NL / . Using Eqs.(14) 

to (16) to determine the output signal ,pump  

and ASE  powers. we calculate the solution of 

Eqs.(14) to (16) using our proposed model .we 

repeat the above calculation by using 4th order 

Runge-Kutta method to compare  with the new 

model. we found that the results of pP  , SP , 

show  that the two methods give approximately 

(more than 99%)  the same results .also, there is 

a small difference between the values of  

ASEP
 

which calculated by the two method , but the 

difference between them decrease and the two 

methods give approximately (more than 99%) 

the same results  when we choose small width 

of the segments. We applied our proposed 

model in parallel with the numerical method to 

show the behavior of signal, pump and ASE 

powers. 

Fig (1) shows that the signal  powers 

increase to max value at approximately 6 meter  

from the beginning of EDFA . After that the 

value of the signal decreases along the length of 

EDFA until its value becomes  less than its 

input value. This is because pump power 

decreases along  EDFA length as shown in 

Fig(2) and that leads to decrease in   N2  

population as shown in Fig(3) . Fig(4) shows 

the distribution of ASE power for forward and 

backward direction . 

 

6. Conclusions 

In conclusion, the propagation equations in  

EDFA was solved. A simple recursive formula 

is presented to calculate the output power of 

signal , pump, ASE and. The numerical results 

show that our formulas agrees well with the 

numerical solution. We proposed a method to 

find the  solution of the problem of solving the 

backward ASE propagation equation.  

 

Fig.(2): Signal power  Disiribution along  

EDFA distance. 
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Fig.(3):Disiribution of  pump power  along  

EDFA distance 

 

Fig.(4): N1 and N2 populations  along EDFA 

length. 

The simple difference between the values of 

our calculated by numerical method and Runge-

Kutta method 

 

Fig.(4): Power distribution of Forward and 

backward ASE  along EDFA length. 

 

Fig.(5): Power distribution of Forward and 

backward ASE  along EDFA length by Runge-

Kutta method [18]. 
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