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ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

1. Introduction 
The applications of q  -calculus are new area 

in the last 25 years. This great interest is due 

to its application in various branches of 

mathematics and physics. The first 

applications of q -calculus was made by 

Jackson [9, 10]. He developed  q  -

derivative and q  -integral in a systematic. 

Aral and Gupta [5, 1, 7] defined the q  -

analogue of Baskakov Durrmeyer operator 

which based on q  -analogue of beta 

function. The authors studied approximation 

and geometric properties of these q  -

operators in some subclasses of analytic 

functions in compact disk. Studies on 

quantum groups have played an important 

role in defining geometrical interpretation of 

q  -analysis. It also suggests a relation 

between integrable systems and q  -analysis. 

Another important  q  -generalization of 

complex operators is q  -Picard and  q  -

Gauss-Weierstrass singular integral 

operators discussed in [1, 2, 3]. Other q  -

analogues of differential operators have been 

introduced in [11]. 

Let  be a fixed point in the punctured unit 

disk }.0/{}10,C{ UzzU 
 

Denote by )(M  be the class of 

meromorphic functions of the form 
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and is in the class of meromorphic convex of 

order   )10(    denoted by ),,( K  

if 
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We recall some concepts of  q  -calculus, 

all details about  q  -calculus used in this 

paper can be found in [4, 8], for  Nn  , 

the q-number is defined as follows: 

.10    ,
1

1
][ 




 q

q

q
k

k

q        (1.2) 

Hence, qk][  can be expressed as a 

geometric series  ,
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  when k  the 

series converges to 
1

1q
.
 As q 1,

.][ kk  The q  -derivative of a function f(z) 

is defined by 
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where 


g  is the ordinary derivative. 

The q-Jackson definite integral of the 

function  )(zf   is defined by 
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 Definition 1:  A function )(zf  given by 

(1.1) is in the class ),( SM q  of 

meromorphically starlike functions of order 

 in U  if it satisfies  

).10,10,)((   
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Let )(pM  denote the subclass of )(M  

consisting of functions of the form 
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(1.4) 

Also, we define the class ),( SM q   by 

    ).( ),(),(  pqq MSMSM 
 

 

2. Coefficient Estimates 
 Theorem 1:  Let the function 

)(pMf  be given by (1.4). Then 

),(  SMf q  if and only if  
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where 10  q   and  .10   The 

result is sharp. 

 

 Proof:  Let ).,()(  SMzf q Then in 

view of (1.3), we get  
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The above condition must hold for all values 

of )( z  in U  if we choose )( z  to 

be the real and  1)( z  we get 

 
0

1

)()1(

1

1 













k
k

kq
k

a

akq 
 

  0)()1(
1






 kq

k

akq   



MJPS,   VOL. (8),   NO. (1),   2021 

123 
 

  ).1()(
1

 




 kq

k

akq  

Conversely, by applying the hypothesis (2.1) 

and choosing  1 rz   we find that   
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Then ).,(  SMf q   

 Lemma 1:  Let function )(zf  given by 

(1.4) be in the class ),,( SM q  which 

satisfies 
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Let ),,( cSM q 
 denote the class of 

functions )(zf  in ),( SM q  of the form 
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where 10  q  , 10   and .10  c   

 

 
 
 Theorem 2:  Let the function )(zf  be 

defined by (2.2). Then )(zf  

),,( cSM q 
 if and only if  
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The result is sharp. 

 

 Proof:  Putting 
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in (2.1), and simplifying we get the result. 

The result is sharp for the function 
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 Corollary:  Let the function )(zf  

defined by (2.2) be in the class 

).,,( cSM q 
 Then  
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The result is sharp for the function )(zf  

given by (2.5). 

  

3. Closure Theorems 
 

 Theorem 3:  The class ),,( cSM q 
 is 

closed under convex linear combination. 

 

 Proof:  Let the function )(zf  be defined 

by (2.2). Define the function )(zh  by 
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Suppose that )(zf  and )(zh  are in the 

class ),,,( cSM q 
 it is enough to prove 

that the function 
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by returning to the Theorem 2. Hence 

).,,()( cSMzH q   This clearly 
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completes the proof of the Theorem. 

 

 Theorem 4:  Let the functions 
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  for every  
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Since ),,()( cSMzf qj   for every 

j=1,2,...,m, in view of Theorem 2, we get 
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 Theorem 5:  Let  

)(
)(

)1(1
)(1 














 z

q

c

z
zf                                       

(3.10) 

and 

 )(
)][(

)1)(1(
)(

)(

)1(1
)( k

q

k z
kq

c
z

q

c

z
zf 
























      

        (3.11) 

for .2k  Then the function )(zf  is in the 

class ),,( cSM q 
 if and only if it can be 

expressed in the form 
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Conversely, assuming that )(zf  defined by 
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 which 
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this gives (3.12). This compelets the proof of 

the Theorem. 

 

 Corollary 2:  The extreme points of the 

class ),,( cSM q 
are the functions 

)(zf k )1( k   given by (3.10) and (3.11) in 

Theorem 5. 

 

4. Growth and Distortion 
Theorems 

 Theorem 6:  If the function )(zf  

defined by (2.2) is in the class 

),,( cSM q 
 for  0 |z|  r 1 , 

then we have 

|)(|
)(

)1)(1(

)(

)1(1 2

2
zfr

qq

c
r

q

c

r



















 

2

2 )(

)1)(1(

)(

)1(1
r

qq

c
r

q

c

r 















  

with equality for  

.)(
)(

)1)(1(
)(

)(

)1(1
)( 2

22 























 z

qq

c
z

q

c

z
zf

 

Proof :  Suppose that )(zf  is in the class 
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The proof is complete. 

 

 Theorem 7:  If the function )(zf  

defined by (2.2) is in the class 

),,( cSM q 
 for  10  rz   , then 

we have 
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The proof of the Theorem is complete. 

 

5. Radii of Starlikeness 
and Convexity 

 Theorem 8:  Let the function )(zf  

defined by (2.2) is in the class 

).,,( cSM q 
Then )(zf   is starlike of 

order   )10(    in the disk 

),,,(1  crz  , where ),,,(1  cr  

is the largest value for which 
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Then this value is the radius of starlikeness 

of order  for function f  belongs to class  

).,,( cSM q 
 

  

 Theorem 9:  Let the function )(zf  

defined by (2.2) is in the class 
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 Then  )(zf   is convex of 
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for .2k  The result is sharp for function 
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proof. 
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(7.3) 

be in the class ),,( nq cSM 
 for every 

mj ,...,2,1 . Then the function )(zF  

defined by 
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is also in the class ),,,( nq cSM 
 where 
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 Proof :  From (7.3), (7.4) and (7.5) we 

have  
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Since ),,()( nqj cSMzf  for every 

j=1,2,...,m, in view of Theorem 10, we get 
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which implies that ).,,()( nq cSMzF    

 

 Theorem 13:  Let  
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(7.6) 

and 
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(7.7) 

for  .1 nk  Then the function )(zf  is in 

the class ),,( nq cSM 
 if and only if it 

can be expressed in the form 
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Proof : We suppose that the function )(zf  

can be expressed in the form (7.8). Then 

from (7.6) ,(7.7) and (7.9) we have 
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Then ).,,()( nq cSMzf    

Conversely, assuming that )(zf  defined by 

(6.1) be in the class ),,( nq cSM 
 which 
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 Corollary 4:  The extreme points of the 

class  ),,( nq cSM 
 are  
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 Theorem 14:  Let the function )(zf  

defined by (6.1) is in the class 

).,,( kq cSM 
 Then  )(zf  is convex of 

order  )10(    in the disk 

),,,(3  crz  , where  ),,,(3  cr   

is the largest value for which 
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(7.10) 

 

for .1 nk The result is sharp for function 

)(zf  given by (7.1). 

  

 Proof :  It suffices to show that 
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for 2rz   with the aid of Theorem 2. 

Then by using the same technique in the 

proof of Theorem 8 we can complete the 

proof. 
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