MJPS, VOL.(8), NO.(1), 2021

On classes of meromorphic functions with fixed point and fixed
second and finitely many coeeficients defined by a -Derivative

G. E. Abo Elyazyd LA M. Shahin 2 and H. E. Darwish 3
123 Department of Mathematics Faculty of Science, Mansoura University Mansoura, 35516, Egypt.

Received 11-04-2021, Accepted 10-05-2021, Published 20-06-2021.
DOI: 10.52113/2/08.01.2021/121-129

Abstract: In this paper we consider the class M S “(£,a,€)  which consisting of meromorphic univalent

functions with a fixed point % in U™ :={z : zeC,0<| z|<1} and with fixed second positive coefficient.

The aim of the present paper is to drive several interesting properties as coefficient estimates, distortion
theorems, radii of starlikeness and convexity and closure theorems of f (Z) in the class M q S* (C:, o, C).The

results are generalized to families with finitely many fixed coefficients.
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1. Introduction Another important  d -generalization of
The applications of q -calculus are new area complex operators is G -Picard and 0 -
in the last 25 years. This great interest is due Gauss-Weierstrass ~ singular  integral
to its application in various branches of operators discussed in [1, 2, 3]. Other g -
mathematics and physics. The first analogues of differential operators have been
applications of @ -calculus was made by introduced in [11].

Jackson [9, 10]. He developed q - Let ~ be a fixed point in the punctured unit
derivative and 0 -integral in a systematic. disk U" ={zeC,0<|z|<1}=U K{0}.

Aral and Gupta [5, 1, 7] defined the g - Denote by M (<) be the class of

analogue of Baskakov Durrmeyer operator meromorphic functions of the form

which based on 0 -analogue of beta 1 c K

function. The authors studied approximation f@)= 7-¢ +;ak(z—§) 276
and geometric properties of these Qq - (1.1)

operators in some subclasses of analytic A function  f(z) of the form (1.1) is in the

functions in compact disk. Studies on
guantum groups have played an important
role in defining geometrical interpretation of

q -analysis. It also suggests a relation R{— (z-9)f (Z)}>a, (z-¢)eU
between integrable systems and @ -analysis. f(z)

class of meromorphic starlike of order «
(0<a<1) denoted by S(<,a), if
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and is in the class of meromorphic convex of
order ¢ (0<a<1) denoted by K(<,a),

if

[, @=Of @ ~
R{ (1+—f'(z) ]}>a, (z-¢) eU.

We recall some concepts of g -calculus,

all details about Q -calculus used in this
paper can be found in [4,8],for neN ,
the g-number is defined as follows:
1_ k
K], ==,
q

0<qg<1. (1.2)

1-—
Hence, [k]q can be expressed as a

k-1 .
geometric series Y. q', when k — oo the
i=0

1
series convergesto 1s° As 4 &1,

[k] = k.The g -derivative of a function f(z)

is defined by

qu(z)zw, (q=1z=0)
1-a)z
and D, f(0)=f'(0) and

D; f(z) = D, (D, f (z)). For a function
9(z) = z* we found that

D,(9(2)) = Dz* - L8zt _pq 2

1-q)

and
lim D, (g(2)) = lim[k],2** =kz*" = g (2)

where g' is the ordinary derivative.

The g-Jackson definite integral of the
function f(z) isdefined by

jf(t)dqt:(l—q)zif(zq”)q”, zeC.

Definition 1: Afunction f(z) given by
(1.1)isintheclass M S({,a) of
meromorphically starlike functions of order
€ in U if it satisfies

re {_q(z—g)oqf(z)
f(2)
(1.3)
Let M (<) denote the subclass of M (J)

consisting of functions of the form
1 0
f(z)= +>a(z-9" (20
k=1

z2-¢
(1.4)
Also, we define the class M S™(¢, ) by

M, S7(¢,a) =M S({,a) "M (<)

2. Coefficient Estimates
Theorem 1: Let the function
feM_ (&) be given by (1.4). Then

feM,S7(¢,a) ifand only if

i(q[k]q +O‘)ak <l-a (a 20),

k=1
(2.1)
where 0<gq<1 and O0<a<1. The
result is sharp.

Proof: Let f(z)e M S™({,a). Thenin
view of (1.3), we get

~ keN Re{_ q(z=¢)D, f(z) —of (Z)}ZO_

f(z)

A simple computation yields
re -2k, + aa (2= )"
k=1

+Ya -0
k=1
The above condition must hold for all values
of (z—¢) in U ifwe choose (z—¢) to
be therealand (z—-¢) —>1 we get

1-a)- Xk, + w3,

Re >0.

— >0
1+ a
k=1

(1-a)- Y (olk], +a)a, 20
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i(q[k]q +a)a, <(1-a).

Conversely, by applying the hypothesis (2.1)
and choosing |z—¢|=r <1 we find that

1 > k
Re{_ q(z—g,“)qu(z)}2 al+Xa)
(@) 1+3a,

=Q.

Then f eM S™(J,a).

Lemma 1: Letfunction f(z) given by
(1.4) be inthe class M S™(¢, ), which
satisfies

l-a
gk, + a
Hence we can take

a, <

8

l-a

q+a

Let M,S"({,a,c) denote the class of
functions f(z) in M,S™(¢, ) of the form

1 A-a), d ok
(D= @O Ta-0)
(2.2)

where 0<qgq<1l, 0<a<l and O<c<l

Theorem 2: Let the function f(z) be
defined by (2.2). Then f(2) e

M,S™(¢,a,c) ifand only if

3 (alk], + @)a, < @-a)(L-c).

k=2
(2.3)
The result is sharp.
Proof: Putting
c(l-a)
S—,
% q+a
(2.4)
in (2.1), and simplifying we get the result.

0<c<],

1 (1-a)c B = ok
(akm@hz—§+(q+a) (z §)+kz=;,bk(z <) (b, = 0).
(3.1)

123

The result is sharp for the function
F(2)= 1 N l-—a)c
z-¢ (q+a)

(2.5)

(alk], +a)

Corollary: Let the function f(2)
defined by (2.2) be in the class
M,S*({,a,c). Then

a, < (-c0)d-a)
(alkl, + @)
(2.6)
The result is sharp for the function f(z)
given by (2.5).

(k > 2).

3. Closure Theorems

Theorem 3: Theclass M S™({,a,c) is
closed under convex linear combination.

Proof: Letthe function f(z) be defined
by (2.2). Define the function h(z) by

Suppose that f(z) and h(z) areinthe
class M S"(¢,a,c), itisenough to prove
that the function
H(z) = Af (2) + @— A)h(2)
(3.2)
also be in the class M S™(¢, «, ).
Since

H(z) =

(0<A<1)

1 N (l-a)c

z-¢ (q+a)
(3.3)

we obtain that
i(q[k]q +a)lda, +(1- )b < 1-a)l-c)

k=2

(3.4)
by returning to the Theorem 2. Hence
H(z) e M,S™(¢,a,c). This clearly

(Z_é/)_i_ (1—C)(1—(Z) (Z—g)k, (k >

(2-0)+ Va, +@- )b, (2~ 0)"
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completes the proof of the Theorem. 1 (1-a)c

fk (Z) = .

@-co)l-a)
0 T i, 1) ¢

Theorem 4: Let the functions

1 1 . (3.11)
f.(2)= +( —a)C (Z_g)—l—zak,j(z_é’)k’ (fgr; kB)2. Then the function f(z) isin the
2-6 (q+(§:%)3) k=2 class M,S"({,a,c) if and only if it can be
be intheclass M S™({,a,c) forevery expressed in the fornl
j=12,...m . Then the function F(2) f(2)=> 4 f(2),
. =1
defined by ) (3.12)
F(z)zzdjfj(z) (d; 20) where 4, >0 (k>1) and
j=1 0
(3.6) A =1.
. . * k=1
is also in the classm M,S"(¢,a,c), where 3.13)
3d, =1. .
= Proof : We suppose that the function
(3.7) f(z) can be expressed in the form (3.12).
Then from (3.10), (3.11) and (3.13), we
Proof: From (3.5), (3.6) and (3.7), we have
have 1 1-a)c A (1-c)(l-«
" 1 (-a) AT ((q +02)( o k(Eq[k] )(+a) {
—a k=2
F(2)=)d f (2)= + (z-O)+ da z ). |
JZ;‘ P -¢ (o) ; JZ;‘ N
(3.8) since , .
Since f;(z)eM_S"({,a,c) forevery z A kC)( @) (q[k], + @)
j=1,2,...,m, in view of Theorem 2, we get = (lkl; +a)
(Al +a)a; <@-a)t-c), j=12..,m. = (1—C)(1—a)2/1k
k=2 k=2
(3.9) =(l-co)l-a)1-2)
Thus we obtain <(1-c)1-a).

Z(q[k] +a)[2d akJJ idj(z(q[k] +a)ak11fle@_ fAENMS (S a.0).

k=2 j=1 onversely, assuming that f(z) defined by
(2.2) be in the class M S™(¢,«,¢) which

which implies that F(z) e M S™({, «,¢). satisfies (2.6), we obtain

Theorem 5: Let a, < d-0l-a) > 2).
1 (l-a) (k] + )
f1(2)=z_§+ Q+a) (z-¢) Setting
(3.10) A = Ma (k>2)
and “ l-0)l-a) ¢ T

and
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ﬂ/:l_;ﬂkl l_(l_a)cr_rlia
this gives (3.12). This compelets the proof of r (q+a) =A
the Theorem. 1 (d-aoc (A-a)l-c) ;2
Tt e @ rgra)

Corollary 2: The extreme points of the
class M, S™(¢, a,c)are the functions

f.(z) (k=1) givenby (3.10) and (3.11) in
Theorem 5.

4. Growth and Distortion
Theorems
Theorem 6: If the function f(2)
defined by (2.2) is in the class
MqS*(é',Ot,C) for 0 &jz 4 Hr G,
then we have
1_(1—a)cr l-a)1-c) 2 < £(2)]
r (@+a) (@ +q+a)
SLr(l—oz)cH(l a)(l-c) 2
r (@Q+e) (9° +q+a)
with equality for
1 (l-a)c
f,(z) =
= v

(z-0)+ w(
(@*+q+a)

Proof : Suppose that f(z) isin the class
M,S*({,a,c). By Theorem 2, we have
< l-a)1-c)

< C k>2.
(alk], + @)
Thus, for 0<|z-¢|=r<1
1 (1 a)c
f(z - k
1@+ e Ta
1 (1 a)cC ? o
< ; (q+a)r+r kZ;ak
S1_|_(1—05)C +(1 a)(l-c) 2
r Q+a) Ch +Q+05)
and
1 _(l—a)C A~ K
MO @ A

The proof is complete.

Theorem 7: If the function f(z)
defined by (2.2) is in the class
M, S" (¢, a,c) for 0<|z—¢|=r<1 ,then
we have
1

I,2

l-a)c (Q-a)d-c) r< ‘f '(z)‘
(Q+a) (9°+q+a)
L1 @-ak (-a)-0)

? Ch +q+a)

r (Q+a)
with equality for
f(2)= 1 N (l-a)c

(1-a)(1- c)(
2-¢ (q+a)

@* +q+a)

(z-9)+

Proof : From Theorem 2, it follows that
ka, < w, k>2.
-{)%. (alk], + )

Thus, for 0<|z—¢|=r <1, we obtain

: | -1 | (@-a) & e
LR e Mrre R MLt

0

1 (l-a)
=+ +r) ka
r’ (q+a) ; k

lz- 41 =Ir (l a)c (1-a)(1- c)
v gre) (@ +q+a)

<

r

and

[ @faf A e

—wkk 3 k—l’
§)2| za|z é/|

q+a) i

(z-<]=n)
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1 (-a) & (5.4)
2 7 @+a) —rgkak and it follows that from (2.3), we may take
) 1-c)(l-«
L1 (-ax_(-a)t-c), ksﬁzk, k>2
PGt @+a+a) i

The proof of the Theorem is complete.

5. Radii of Starlikeness

and Convexity
Theorem 8: Let the function f(z)
defined by (2.2) is in the class
M,S"({,a,c).Then f(z) is starlike of
order p (0<p<1) inthedisk

lz-¢]< (¢ a.c p), where 1,(¢,a,c,p)
is the largest value for which
A+p)d-a)c , (A-a)d-Cc)k+p) «a

where 4, >0 and i A <L
k=2

For each fixed I, we choose the positive

H _ H (k+p) k+1 &
integer k, =k, (r) for which 251" is

Then it follows that
D (k+p)a,rt< d=e)l=a)ks £) i
(alkyIq + @)
(5.5)
Then f(2) is starlike of order p in

0<|z-¢|< (¢ a,c,p) provided that
) A+p)Q- O!)Crz+(1 a)l-c)(k, +p) pott

maximal.

<@- <(-p)
(a+a) (alk], +a) (a+a) (alk, ], + )
(5.1) (5.6)
for k>2. The result is sharp for function we find the value 1, =r,(¢,a,c, p) and the
f(z) givenby (2.5). corresponding integer K, (r,) so that
Proof : It suffices to show that (L+p)d-a)c r02+(l @)L=C)k +p) riet = (1- p).
@-Of () (@+a) (alko], + )
() A‘S(l—p) (5.7)
Then this value is the radius of starlikeness
for [z-¢|<r({,a.c,p). We have of order ¢ for function f belongs to class
S (¢,a,c).
2(1-a)c
-0t @ | |FF e Seeae- g)”T<1_p
‘ f(2) Lt (COLY S Zak(Z—C) JEheorem 9: Let the function f(z)
e k=2 defined by (2.2) is in the class
(5-_2) M,S"(¢,a,c). Then f(z) isconvex of
Hence (5.2) holds true if ) )
order p (0<p<1) inthe disk
2l-a)c ;2 K
—(q+ ) +;( +Da,r* lz-¢]<r, (¢ a,c,p), where 1,(S,a,c,p)
is the largest value for which
<(1_p)£ e s +p)- a)cr2+k(k+p[)<1 A=) s g
- k
@ra) & @+a) (lkly +x)
(5.3) (5.8)
or for k>2. The result is sharp for function
1+ p)L-a)c e f(2) given by (2.5).

+a) +k22‘,(k+p)a r* <(1-p)

Proof : It suffices to show that
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2-O)f (z
(f;)—()+2 <(-p) Corollary 3: Let the function f(z)

(2) defined by (6.1) be in the class
for |z—¢|<r, with the aid of Theorem 2. M,S"(¢,a.c,). Then
Then by using the same technique in the n
proof of Theorem 8 we can complete the 1-2c)d-a)
proof. a, <—"-t , (k=n+1).

(alk], + @)
6. The Class M.,s'(¢,a.c,) . 72
) a P The result is sharp for the function f(z)
In addition to fixing the second coefficient, given by (7.1).
we can fix finitely many coefficients.
Let M,S"(¢,a,c,) denote the class of Theorem 11: Theclass M S*({,a,c,)
functionsin M S™({, ) of the form is closed under convex linear combination.
1 . Ci 1_0./ i =

(@)= 25X s @0+ 3 a(-Obroot - Letthe function 1(2) be

I et defined by (6.1). Define the function h(z)

(6.1) oy
where 0<% c, =c<1. Note that 1 "o (l-a L
@)=t D O 0 Y b0

MqS*(C,a,Cl)zMqS*(é/,OC,C). i=1 q k=n+1

. Suppose that f(z) and h(z) are in the
7. properties of . @ : .()
M. S*( ¢) class M,S™({,a,c,), itisenough to prove
‘ __g'a’ " that the function
Theorem 10: (coefficient estimates) A H(z) = 2f (2)+ (- )h(z) (0<A<])
function f@¢ defined by (6.1) is in

. ) _ also be in the class M ,S™(¢,a,c,).
M,S"(¢,a,c,) ifand only if

Since
3 (alk], + @)a, < @-a)d-Yc), HED) =—2 +5 802D i S Ga +1-2b, )
2-¢ g(q[l]q +a) Z{ ‘ o
where 0<Yc =c<1 and O <ci <1 _
i=1 we obtain that
The result is sharp. o n
3 (GIK], + @ ){za, + Q- b < t-a)t-Yc)
Proof : Putting k=n+1 i1
C(l-a) . .
S————,  1=123,...,n, by returning to the Theorem 10. Hence
(alil, +a) H(z)e M S"({,a,c,). Thisclearly

in (2.1), and simplifying we get the result.

The result is sharp for the function completes the proof of the Theorem.

I o -ak . (1-Xc)@-cyheorem 12: Let the functions
o= 2+ (q[k]qw)f,-f%)‘:ngg(-'ﬁ_ (Zf?]l‘+“;)(z—4)‘+Zak,j(z—é)k, <
(71) i=1 q k=n+1

127



MJPS, VOL.(8), NO.(1), 2021

(7.3) can be expressed in the form
be inthe class M, S"(¢,a,c,) forevery F(2) = Z;L f.(2),
j=12,...,m. Then the function F(z)

defined by (7 8)
m where 4, >0 (k>n) and
F(Z):Zdjfj(z) (d; 20) .
: (7.4) kzﬂk -+
is also in the class M, S*(¢,a,c,), where (7.9)
m Proof : We suppose that the function f(z)
>d; =1 can be expressed in the form (7.8). Then
=1 . from (7.6) ,(7.7) and (7.9) we have
(7.5) o . ' ela) oo . ﬂk(l—ici)(l—a
: 7)= + -0+ =L
hl;’\;é)of : From (7.3), (7.4) and (7.5) we - g(q[i]q o) ¢ kgl QK] + )
F@)=Yd,1,@) =t Y =D (o gy +SECEZd a, ,](z o,
i1 2-¢ T (Q[l]q +05) K=n+1\ j1
A -Yc)(-a)
_ . - (alk], + @)
Since f;(z) e M, S"({,a,c,) for every Ga (alk], + o)

j=1,2,....m, in view of Theorem 10, we get

© n =1->c)l-«a) A
Z (q[k]q +a)ak,j = (1_a)(1—ZCi), j=12,...,m. Z kzn;rl

k=n+1 —(]_ ZC)(]_ a)(l ﬂ)

Thus we obtain

> (alkl, +a)(2d ak,J Zd (Z(q[k] ra a“j—& %@)(12

ket = e Then f(z)eM 5" (¢ ac,).
which implies that F(z) € M, S" (¢, a.c,). Conversely, assuming that f(z) defined by
(6.1) be inthe class M S (¢, a,c,) which
Theorem 13: Let satisfies (7.2), we obtain
noc(1- . n
f.(z)= 1 +> ) (z-¢) 1-Xc)d-a)
z-¢ S (dfi], +a) a < i (k>n+1).
(7.6) (alk], + @)
and Setting
k
n _ Q- Zc)(l— )A _ (k] +a) a, (k>n+1),
f(Z) 1 +Z Ci(l 05) (Z éz)i_'_ i é/li ZC)(]- ) k
= a - o
¢ Gl e (q[k]qm)
(7.7) and
for k>n+1. Then the function f(z) isin A =1- i A.
the class M S (¢, a,c,) ifand only if it K=n+l
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Corollary 4: The extreme points of the
class M, S*(¢,a,c,) are

¢(l-a)

1L |
"0 L e )
and
_ 1 - Cl-a) i, @-0)@-
"= e i C ) -

Theorem 14: Let the function f(z)
defined by (6.1) is in the class
M,S"(¢,a,c,). Then f(z) isconvex of
order p (0< p<1) in the disk
lz-¢|< (¢ ac p), where 1,(<,a,c,p)
is the largest value for which

il P-ae, s, k(k+ p)a-a)d-3c)

(qlil, +@) ((alk], + @)

i=1

(7.10)

for k>n+1.The result is sharp for function
f(2) given by (7.1).

It suffices to show that

(GRS L P
f (2)

for |z—¢|<r, with the aid of Theorem 2.

Then by using the same technique in the

proof of Theorem 8 we can complete the
proof.

Proof :
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