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Abstract: In this paper we consider the class M q S ’ (Z, a, C) which consisting of meromorphic univalent

functions with a fixed point ¢ in U™ ={z :

zl C,09z|<1} and with fixed second positive coefficient.

The aim of the present paper is to drive several interesting properties as coefficient estimates, distortion

theorems, radii of starlikeness and convexity and closure theorems of f (Z) in the class M q S ’ (Z, a, C).The

results are generalized to families with finitely many fixed coefficients.
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1. Introduction

The applications of g -calculus are new area
in the last 25 years. This great interest is due
to its application in various branches of
mathematics and physics. The first
applications of g -calculus was made by
Jackson [9, 10]. He developed q -
derivative and  -integral in a systematic.
Aral and Gupta [5, 1, 7] defined the g -
analogue of Baskakov Durrmeyer operator

which based on g -analogue of Dbeta
function. The authors studied approximation

and geometric properties of these Qq -
operators in some subclasses of analytic
functions in compact disk. Studies on
guantum groups have played an important
role in defining geometrical interpretation of

g -analysis. It also suggests a relation
between integrable systems and 0 -analysis.
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Another important g -generalization of

complex operators is g -Picard and Q -
Gauss-Weierstrass singular integral

operators discussed in [1, 2, 3]. Other q -
analogues of differential operators have been
introduced in [11].

Let ¢ be a fixed point in the punctured unit
disk U™ ={zi C,0<|z|<1}=U 40}
Denote by M(Zz) be the class of
meromorphic functions of the form

f(Z):z-lz

+34a,(z-2), z,z
k=1
(1.2)
A function f(z) of the form (1.1) is in the
class of meromorphic starlike of order a
(0¢a <l denotedby S(z,a), if
g (z-2)f (»)F
Ri- — U

% Q) >a, (z-z)I U
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and is in the class of meromorphic convex of
order @ (0¢a<1) denotedby K(z,a),

if
Rf %+M%>a, (z- 2)I U.
I ¢ :

We recall some concepts of g -calculus,

all details about g -calculus used in this
paper can be found in [4, 8], for nl N ,
the g-number is defined as follows:

1-g*
k1l =
Kl =7
Hence, [k]q can be expressed as a

, 0<qg<Ll (1.2)

k-1 .
geometric series & q', when k- © the
i=0

1 .
series convergesto 12q° As q U 1,

[k]- k.The g -derivative of a function f(z)
is defined by
D, f(z)=B" 1@ ¢4, 0

d- a)z
and D, f(0)=fi(0) and

D; f(z) = D, (D, f (z)). For a function
9(z) = z* we found that

D,(9(z)) =D,z" =

t-q)

and
lim D, (9(2)) = lim{k] 2" =kz"* = g (2),

where g is the ordinary derivative.
The g-Jackson definite integral of the

function f(z) isdefined by
Af Od,t=1- 9)zgq f(z9")q", zl C.
0 n=0

Definition 1: Afunction f(z) given by
(1.1)isintheclass M S(z,a) of
meromorphically starlike functions of order
J in UP if it satisfies

k
(1- q )Zk-l:[k]qzk-I’ kl’ N

é q(z- z)qu(z)Q
F -
i

f@
(1.3)
Let M (z) denote the subclass of M(z2)

consisting of functions of the form

f(Z):z—lz

+a,G- 2 (a2 0).
k=1

(1.4)
Also, we define the class M qS* (z,a) by

M, S"(z,a) =M S(z,a) £M ,(2).

2. Coefficient Estimates
Theorem 1: Let the function
f1 M (z) be given by (1.4). Then
f1 M,S"(z,a) ifand only if

ol

A (o], +a)a, ¢1-a (a2 0),

k=1

(2.1)
where 0<q<1 and 0¢a<1. The
result is sharp.

Proof: Let f(z)I M,S"(z,a).Thenin
view of (1.3), we get
& q(z- 2)D_f(z)- af (2)0
red. 12- 2D, @)- At @1, o
i f(2) y
A simple computation yields
€L, = a
e aalk], +a)a(z- 2)5
Rej =L {2
T L+aa-2) 1
| k=1
The above condition must hold for all values
of (z- z) in U ifwe choose (z- z) to

betherealand (z- z)- 1 we get

- 2)- alkd, +aa,

20
1+4& a,
k=1

@- a)- & K, +a)a, 2 0

122

i>a ((z-z)i U,0<g<10¢a-
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é_l(q[k]q +a)a, ¢ (1- a).

Conversely, by applying the hypothesis (2.1)
and choosing |z- z|=r <1 we find that

red. 02- 20D, f @), a(l+aa)
i @y 1434

k=1

=a.

Then fi M, S"(z,a).

Lemma 1: Letfunction f(z) given by
(1.4) be in the class M S™(z,a), which
satisfies

1- a
a ¢ ————.

qlkl, +a

Hence we can take

a ¢ 1-a
qt+a
Let MqS*(z,a,c) denote the class of

functions f(z) in M,S"(z,a) of the form

f(z) = z-lz + ((1q-+a;;: (z- z)+é_2ak(z- 2)

(2.2)
where 0<q<1, 0¢a<l and O<c<l

k

Theorem 2: Let the function f(z) be
defined by (2.2). Then f(2)I

M,S’(z,a,c) if and only if

4 (qx, +a)a, ¢ @- a)a- o).

k=2
(2.3)
The result is sharp.
Proof: Putting
c(l- a)
¢ :
& q+a
(2.4)
in (2.1), and simplifying we get the result.

0Oc¢cc¢l,

(@@= _12 ¥ ((1q+a;)c (@-2)+ab(z-2)" .20,
(3.1)
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The result is sharp for the function
F(2) = 1 +(1- a)c
z-z (q+a)

(2.5)

(alk], +a)

Corollary: Let the function f(2)
defined by (2.2) be in the class

M,S (z,a,c). Then

¢ @-o0@-a) (k2 2).
(alkl, +a)
(2.6)

The result is sharp for the function f(z)
given by (2.5).

3. Closure Theorems

Theorem 3: Theclass M, S"(z,a,c) is
closed under convex linear combination.

Proof: Letthe function f(z) be defined
by (2.2). Define the function h(z) by

Suppose that f(z) and h(z) areinthe
class MqS*(z,a,c), it is enough to prove

that the function
H(z)=/f(2)+@- /)h(2)
(3.2)
also be in the class M qS* (z,a,c).

Since

H(2) =

¢/ ¢

1 @-a)
z-z (q+a)
(3.3

we obtain that
3 (aIkl, +a)f{/a, +@- b} e a- a)i- c)

k=2

(3.4)
by returning to the Theorem 2. Hence
H(z)I M, S"(z,a,c). Thisclearly

(Z- Z)+W(z_ z)k’ (k2

(2- 2)+Al/a, +A- b}z 2)"
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completes the proof of the Theorem. 1 +(1-a)c( 2)+ @-o)@- a)(

f (2)=
-7 +a k1 +a
Theorem 4: Let the functions +a) (atk], )

1 1 . (3.11)
f)=—t +88C 0 oyima (2o 2)% (fr KRR Thenthefunction f(z) isin the
. z-z (q+a) o ) . . S
(35) class M S (z,a,c) ifand only if it can be
beintheclass M,S™(z,a,c) for every expressed in the fornl
j=12,...m . Then the function F(2) f(z)=a /(i (2),
. k=1
defined by ) (3.12)
F(z)=ad;f;(z) (d;20) where /,20 (k21) and
j=L o
(3.6) a’ =L
; ; * k=1
is also in the classm M,S (z,a,c), where (3.13)
A d. =1.
j8:.1 ! Proof : We suppose that the function
(3.7) f(z) can be expressed in the form (3.12).
Then from (3.10), (3.11) and (3.13), we
Proof: From (3.5), (3.6) and (3.7), we have
have F(2) = 1 ((1 +a)§(z_ 2)+ 5 /k((l[-k]c)(j- ;a)
. 1 1- a)c 5 ar g+a - (g a
FO=adf@=—+1 2 . z)+a§dakjg(z 2y =
= -z (q +ta ) k=2( j=1 :
(3.8) since 90
Since f;(z)I MS (z,a,c) forevery a = (K], +a) (a[k], +a)
j=1,2,...,.m, in view of Theorem 2, we get k=2
é_(q[k]G| +az)ak'j ¢(@1- a)l-c), j=12..,m. =@l-oa- a)é. /y
k=2 k=2
(3.9) =(1-o)@-a)-/)
Thus we obtain ¢ (1- c)(1- Q).
08 a8 : i WS
(q[k] +a)§ dja,,§=8 ¢, 8 (ark1, +a)a, , G0 -T&3H - 1S (2.2.0) _
Cizt + 3 Gk=2 €onversely, assuming that f(z) defined by

(2.2) be in the class M,S™(z,a,c) which

which implies that F(z)i M S™(z,a,c). satisfies (2.6), we obtain

1-c)(1-
Theorem 5; Let a, -od-a) (k2 2).
i (alkl, +a)
1 @- a)c
h@)=_—+ Q+a) (z- 2) Setting
+
and @- o)@- a)

and
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(z-

z)¥,
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/=1- 3 /,, ] .
k=2 2 1. { a)cr-rzaak
this gives (3.12). This compelets the proof of r (q+a) =2
the Theorem. , 1 (@- av)cr @-a)a-c) 2
r (@+a) (@°+q+a)

Corollary 2: The extreme points of the
class M qS* (z,a,c)are the functions

f, (z) (k21) givenby(3.10) and (3.11) in
Theorem 5.

4. Growth and Distortion
Theorems
Theorem 6: If the function f(2)
defined by (2.2) is in the class
M,S"(z,a,c) for 0<|z? @ =r<1,
then we have
1 (1-a) 1- a)d-c
__( ) ( )( ) 2¢|f(Z)|
r (q+a) (9°+q+a)
¢1+(1-a)cr @- a)t-c) 2
r (q+a) (9 +q+a)
with equality for

1 @- a)c @- a)@- c)
LT Ty U @ rgra)
Proof : Suppose that f(z) isin the class

M,S"(z,a,c). By Theorem 2, we have

k (1 a)l- c) K2 2
(Q[k] +a)’
Thus, for 0<|z- z|=r<1
1 @-ayx,. 2 K
|f(z)|¢|z-z|+(q+a)|z z|+22ak|z z|',
1 (@-a) 2
¢ -+ r+r a
r@ra) A
¢1+(1-a)c (- a)l-c) [
r (q+a) Ch +q+a)
and
1 @- a) o k
f(2)|2 . - 2| - 2|,
1O g (gray A Bl
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The proof is complete.

Theorem 7: If the function f(2)
defined by (2.2) is in the class
M, S (z,a,c) for 0<|z- z|=r<1 ,then
we have

iz_ @-a) (1-2a)(1- c)r¢‘fi(z)‘

r (q+a) (9" +q+a)

i+ @- a (1 a)l- c)
i gra) (@ +q+a)
with equality for
f(2)= 1 +(1- a)c

z-z (gq+a)

- a)- c)(
(9> +q+a)

(z- 2)+

Proof : From Theorem 2, it follows that
) ka, ¢ w’ k22
(alk], +a)

Thus, for 0<|z- z|]=r <1, we obtain

-1 | 1-a) = K
ol G2yl qray TAKA A

1 (@-a) .
¢ =+ +r3 ka
2 (q+a) &M

|z- zé—lr (- a)c (- a)d- c)

2

r- (q+a) (q +q+a)
and

1- .
e s Al

(z- z|=r1)

7).

(z- z|=r)
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, 1 (@-ax ;: (5.4)
2 (@g+a) rk32 ka, and it follows that from (2.3), we may take
1-c)1- a
, 1 (@-a) @-a)d- c) ‘ W/k, k22
7 @ra) (@ +q+a) i

The proof of the Theorem is complete.

5. Radii of Starlikeness

and Convexity
Theorem 8: Let the function f(z)
defined by (2.2) is in the class
M,S"(z,a,c).Then f(z) is starlike of
order r (0¢ r ¢1) inthe disk
z- z|<r(z,a,c,r), where r,(z,a,c,r)

is the largest value for which
@+r)d-ajp ., @A-a)l-c)k+r) wa

where /, 2 0 and a /[, ¢l
k=2

For each fixed I, we choose the positive

integer k, =k, (r) for which {2 pk

(@Kl +2) 1S

maximal Then it follows that
a(k + ,.)ak k+l (1- C)(l- a)(ko +f) I,.k0+1.
ke (alk,l, +a)

(5.5)
Then f(2) is starlike of order r in

0<|z- z|<r(z,a,c,r) provided that
@-a)l-c)k, +r) ot

¢ - ) LEOA-2)C 2 ¢ (1- r)
(a+a) (ak], +a) (a+a) (alko], +a)
(5.1) (5.6)
for k2 2. The result is sharp for function we find the value r, =r,(z,a,c,r) and the
f(z) givenby (2.5). corresponding integer K, (r,) so that
Proof : It suffices to show that (L+7)d- a)c r’+ (l 2)L- )k, *7) rlet =(1- r).
i (a+a) (alko ], +a)
(z-2)f (2)
T+ ¢l-r) (5.7)
Then this value is the radius of starlikeness
for |z- z|<r(z,a,c,r). We have of order ¢ for function f belongs to class
) S (z,a,c).
) 2(l-a)c
‘ f(2) 1 g a)C(Z_ z)+ a a (z- 2)* JEheorem 9: Let the function f(z)
i k=2 defined by (2.2) is in the class
Hence (5.2 hold tr(i-_zf) M,S"(z,a,c). Then f(z) isconvex of
struei
order r (0¢ r ¢1) inthe disk
2(1- a)c ;2
m +:':1 (k +D)a, r* z- z|<r,(z,a,c,r), where T1,(z,a,c,r)
2
is the largest value for which
1-a)e » kk+r)A-a)A-C) ka
( a)c At % ¢ (- r)
¢a- f% o) +a %8 (q+a) (alk], +a)
(5.3) (5.8)
or for k2 2. The result is sharp for function
@ f(2) given by (2.5).
(1+f)(1 a)C 2 +a(k+f)ak k+l ¢(1 /,)
(q+a) k=2
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Proof : It suffices to show that
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z-2)f (z
(f)—()*'z ¢1-r) Corollary 3: Let the function f(z)

(2) defined by (6.1) be in the class
for |z- z| <r, with the aid of Theorem 2. M,S"(z,a,c,). Then
Then by using the same technique in the n
proof of Theorem 8 we can complete the d-&ac)d- a)
proof. 8 ¢ —= , (k2 n+1).

(alk], +a)
6. The Class M. s'(z.a.c,) . 2
) a T The result is sharp for the function f(z)
In addition to fixing the second coefficient, given by (7.1).
we can fix finitely many coefficients.
Let M,S"(z,a,c,) denote the class of Theorem 11: Theclass M,S"(z,a,c,)
functionsin M S™(z,a) of the form is closed under convex linear combination.
1 .. C(-a P

f(z) = ST (q[i(] +;) (z- 2)'+ & a(z- 2)Broof : Letthe function f(z) be

= A e defined by (6.1). Define the function h(z)

(6.1) by
where 0¢ac =c¢1. Note that 1 _'3 c,(l- a DA
i=1 h(z) = (z- z)'+ g b.(z- 2)~

M,S"(z.a,c,) =M, S (z,a,c). "Z m q['] *a) =n+1

. Suppose that f(z) and h(z) are in the
7. properties of ot 1) : .()
. class M,S™(z,a,c,), itisenough to prove
M,S (z,a,c,) ]
“ o : that the function
Theorem 10: (coefficient estimates) A H(z)=/f(2)+(- /)h(z) (0¢/ ¢1)
function f&# defined by (6.1) is in

s . _ also be in the class M,S"(z,a,c,).
M,S (z,a,c,) ifandonly if

Since
(Q[k] +a)a ¢Q@-a)d- ac) HZ)=—t +3 S0 o iy 5 fa +a- /)p)
K n+1 k (2) —_ ia:1(q|:i]q +a)( ) k:an.+l{ T ) k}
where O¢aci:c¢1 and 00Oc; O1.
i=1 we obtain that
The result is sharp. o n
4 (or1, +a){ra +@- /)b e - a)a- & c)
Proof : Putting k=n+ =
c,(1- a) . .
i ¢f, 1=1,23,...,n, by returning to the Theorem 10. Hence
(atl, +a) H(z)I M,S"(z,a,c,). This clearly

in (2.1), and simplifying we get the result.

The result is sharp for the function completes the proof of the Theorem.

(1 ar{c)(l a]'heorem 12: Let the functions

_ 1 ot (1_ ) i i i=1 2n ) °
(71) i=1 k=n+1
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(7.3) can be expressed in the form
be in the class M _ S (z,a,c,) for ever )y
_ > (22,5, for every D=4/
j =1,2,...,m. Then the function F(z) k=n

defined by (7.8)
m where /, 20 (k2 n) and
F(z)=ad;f;(z) (d;20) o
=1 5/ =1,
(7.4) a
is also in the class M, S"(z,a,c,), where (7.9)
m Proof : We suppose that the function f(z)
ad, =1 can be expressed in the form (7.8). Then
= from (7.6) ,(7.7) and (7.9) we have
7.5 n
( ) n ol /k(l- aC)(l- a
Proof : From (7.3), (7.4) and (7.5 f(2)=— +a' %) oy 4 En
ha\;((a)o : From (7.3), (7.4) and (7.5) we -z Al va) & i )
F@=40,,0= " +8 5D @ oy rshiBhoa, fo 2
-Z a (Q[l]q +a) k=n+1C j=1
o [/, (@* ac)(l a)
2 4
] . (alk], +a)
Since f,(z)i M,S"(z,a,c,) for every k§+1 (alk], +a) !

j—1 2,...,m, in view of Theorem 10 we get

o

= @- §¢)1- a) é /,
4 (a1, +a)a, ¢ @- a)a- ac) i=12..m %

=(- ac)(l a)l-7/)

i=1

k= n+1
Thus we obtain
ém o m é o 1" a
& (01, +a)38 dya, 8= 2 d 34 (1K1, +a)a,, §E - 4004 &
S G T e Thén f(2)i M5 (z.a.c,).
Conversely, assuming that f(z) defined by
(6.1) be in the class M,S’(z,a,c,) which

Theorem 13: Let satisfies (7.2), we obtain
1 +.T c,(1-a)

which implies that F(z)I M S"(z.a,c,).

f,(2)= (2 2y (- dc)t- a)
2-z G (di], +a) a, ¢ — i (k2 n+2).
(7.6) (alk], +a)
and Setting
k
f 1 ) c(-a) @ ac)(l a)/ -i(q[] D o (kzne
()= + z-2) +
- T I MU T B EL )
(7.7) and
for k2 n+1. Then the function f(z) isin / =1- a /.
the class M,S"(z,a,c,) ifand only if it k=L
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Corollary 4: The extreme points of the
class M. S"(z,a,c,) are

1 LA c,(1- a)

ha= 7 a (alk], +a)(z- 2)
and
1 s cl-a) o (-0o)@d-
MO A v YD -

Theorem 14: Let the function f(z)
defined by (6.1) is in the class
MqS*(z,a,ck). Then f(z) is convex of
order r (0¢ r ¢1) in the disk

z- z|<r,(z,a,c,r), where r1,(z,a,c,r)
is the largest value for which

2 i+ Q) i, k(k+r)@1- a)@- élci)

(qlil, +a) ((alk], +a)

i=1

(7.10)

for k2 n+1.The result is sharp for function
f(2) given by (7.1).

It suffices to show that

@-2f'@,,
f (2)

for |z- z| <r, with the aid of Theorem 2.

Then by using the same technique in the
proof of Theorem 8 we can complete the
proof.

Proof :

¢@-r)
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