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Abstract: Let 𝐺 be a graph and 𝑓: 𝐺 ⟶ 𝐺 be continuous function, we study some types of chaotic functions on a graph 

and find the relation between them. We also introduce a new type of chaos defined on a graph called strongly chaotic and 

characterization generically chaotic and densely chaotic on graph maps. 
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1. Introduction 

The purpose of this paper is to study some 

notions of chaos for graph map and find the 

relation between them. Grzegorz .H et al. [5], 

studied two definitions of chaos on graph 

map,the first Auslander and Yorke: a map f is 

chaotic if it is transitive and sensitive to initial 

conditions. The second is Devaney chaos: a 

map f is chaotic if it is transitive and sensitive 

to initial conditions, and the set of periodic 

points of f is dense, prove that Auslander and 

Yorke chaos implies Devaney chaos, and weak 

mixing implies mixing for graph map. 

Miyazawa [10], showed that Devaney chaos 

and 𝜔-chaos are equivalent for graph maps. 

Roman and Michal [11] proved that the 

distributional chaos and positive topological 

entropy are equivalent for continuous graph 

maps. Ruette and Snoha[4] studied the Li-

Yorke chaos for graph maps and proved the 

existence of a scrambled pair implies Li-Yorke 

chaos.   

A pair ),( fX is a discrete dynamical system 

if X is a topological space and XXf :  is 

continuous. The orbit of a point Xx , denoted 

by )(xO f , is the set )(xO f =

 ....2,1,0\)( nxf n  )(xf n can be considered 

as the new position of x  after n  units of time, 

where ffff n   is the composition 

of f  taken n -times. The point x  is a periodic 

point if there exists an integer 1n  such that

xxf n )( , and the set of all periodic points 

denoted by )( fP . A map f is transitive if for 

every pair of non-empty open sets VU & in X  

there is a positive integer n , such that 

VUf n )( , and f is said  to be totally 

transitive if
nf is transitive for all integers 

1n , note that if n  and
nf is transitive 

then f is transitive. The converse is not true in 

general. f  is said to  be mixing if for all non-

empty open sets VU ,  there exists , such 

that for all 𝑛 ≥ 𝑁, 𝑓𝑛(𝑈) ∩ 𝑉 ≠ ∅,  and f  is 

weakly  topologically mixing, or just weakly 

mixing if the Cartesian product 𝑓 × 𝑓is 

transitive. This is equivalent to saying that, if 

𝑈𝑖 and 𝑉𝑖 are non-empty open sets for each𝑖 ≤
𝑚, then there is a 1n  such that 𝑓𝑛(𝑈𝑖) ∩
𝑉𝑖 ≠ ∅ for each𝑖 ≤ 𝑚. For 0 , f is said to 

be sensitive dependence on initial conditions 

(SDIC) if, for every point Xx and 0 , 

there exists a point Xy  with ),( yxd  

and n  such that ))(),(( yfxfd nn . 

A topological graph is non-degenerate compact 

connected metric space 𝐺 containing a finite 

subset 𝑉, whose points are called vertices, such 

that each connected component of 𝐺 ⁄ 𝑉 is the 
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disjoint union of finite number of open subsets 

of 𝐺, called edge, with property that each edges 

is homeomorphic to an open interval of real 

line and it's boundary consists of at most two 

points which are called the vertices. Note that 

each graph is locally connected. A circuit is a 

subset of 𝐺 homeomorphic to a circle and any 

graph without circuits is called tree. A graph 

map is a dynamical system on a graph, that is a 

continuous map 𝑓: 𝐺 ⟶ 𝐺, where 𝐺 is a graph.  

2. Transitive Graph Maps  
In this paper, we shall consider transitive 

maps on graphs which are not trees. Such 

graph are not contractible to one point, 

therefore, it may be exist transitive maps on 

these graph having no periodic points. In fact 

according to [1], transitive graph map without 

periodic points may be defined on connected 

graphs only if these graph are homeomorphic 

to the circle. 

Theorem (2-1)[1]: Let 𝐺 be a graph and let 

𝑓 ∈ 𝐶(𝐺, 𝐺) be transitive map without periodic 

points. Then 𝑓 is totally transitive, 𝐺 is the 

circle and 𝑓is conjugate to an irrational rotation 

(in particular 𝑓 has zero topological entropy). 

Theorem (2-2)[1]: Let 𝐺 be a graph and let 

𝑓 ∈ 𝐶(𝐺, 𝐺) be a transitive map. Then either 

the set of periodic points of 𝑓 is dense in 𝐺 and 

𝑓 has positive topological entropy, or 𝐺 is the 

circle and 𝑓 is conjugate to an irrational 

rotation of the circle. Now, we can classify the 

transitive map on a graph in two classes: map 

with periodic point (dense periodic points, 

positive topological entropy), and map without 

periodic points (𝑓 is totally transitive, zero 

topological entropy), theorem (2-3), completes 

the characterization of totally transitive graph 

map. 

Theorem (2-3)[1]: Let 𝐺 be graph and let 𝑓 ∈
𝐶(𝐺, 𝐺)  be transitive. Then the following 

statements are equivalent: 

 (i) 𝑓 is totally transitive. 

(ii) 𝑓  is topologically mixing. 

(iii) The set of periodic points is cofinite inℕ 

It is well know that mixing implies weak 

mixing, the following results discuss the 

relationship between mixing and weak mixing 

and totally transitive on graph map. 

Theorem (2-4)[5]: If  𝑓 is a weakly mixing 

graph map, then 𝑓 is mixing. 

Theorem (2-5)[6]: A totally transitive map 

with a dense set of periodic points is weakly 

mixing. 

Corollary (2-6)[6]: If 𝑓is totally transitive and 

has a dense periodic points ,𝑓𝑛 is weakly 

mixing for each 𝑛 ≥ 1. 

Now, we can prove the following corollary: 

Corollary (2-7): If  𝑓 ∈ 𝐶(𝐺, 𝐺) is totally 

transitive graph map with periodic points 

then 𝑓 is mixing. 

Proof: since the 𝑓 is totally transitive map, so 

𝑓  is transitive and has periodic points, 

according to theorem (2-2), 𝑓 has dense 

periodic points. Hence by theorem (2-5) 𝑓 is 

weakly mixing. By theorem (2-4) 𝑓 is mixing. 

Total transitive is reassuring property to 

discretize a continuous dynamical system. As 

we shall see the total transitive has a strong 

relation with the notion below. 

Definition(2-8)[12]: Let (𝑋, 𝑑) be a compact 

metric space, a map𝑓: 𝑋 ⟶ 𝑋 is said to verify 

the specification property if for any 𝜖 >
0  there exists 𝑀(𝜖) ∈ ℕ , such that for any 

collection of points 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘 with 𝑘 ≥
2, for any collection of integers 𝑎1 ≤ 𝑏1 <
𝑎2 ≤ 𝑏2 < ⋯ < 𝑎𝑘 ≤ 𝑏𝑘 ,such that 𝑎𝑖 −
𝑏𝑖−1 ≥ 𝑀(𝜖) and for any 𝑝 ∈ ℕ such that 𝑝 ≥
𝑀(𝜖) + 𝑏𝑘 − 𝑎1,there exists a point𝑦 ∈ 𝑋 such 

that 𝑓𝑝(𝑦) = 𝑦 and 𝑑(𝑓𝑛(𝑦), 𝑓𝑛(𝑥𝑖)) ≤ 𝜖 for 

each 𝑛 , 𝑎𝑖 ≤ 𝑛 ≤ 𝑏𝑖 ,1 ≤ 𝑖 ≤ 𝑘. when 𝑘 = 2 

we say 𝑓 verifies the weak specification 

property. 

The relation between the specification 

property and the totally transitive map can be 

found in the following theorem. 

Theorem (2-9)[12]: Let 𝐺 be graph and let 𝑓 ∈
𝐶(𝐺, 𝐺)  be transitive. Then the following 

statements are equivalent:  

(a) 𝑓 is totally transitive 

(b)  𝑓 verifies the specification property. 

(c)𝑓 verifies the weak specification property. 

(d) 𝑓  is topologically mixing. 

    We recall the definition of strong transitive 

[8], a map𝑓: 𝐺 ⟶ 𝐺 is called strongly 

transitive if for every non-empty open set 𝐽 ⊂
𝐺,there exists an 𝑛 such that  ⋃ 𝑓𝑘(𝐽) = 𝐺𝑛

𝑘=0 . 

From the above definition every strong 

transitive is transitive, but the converse is not 

true in generally, we can see an examples in 

[8]. 
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Theorem (2-10)[8]:  let 𝑓: 𝐺 ⟶ 𝐺 be a graph 

map with #𝐹𝑖𝑥(𝑓𝑘) < ∞  for each 

 𝑘 ≥ 1. If  𝑓 is transitive, then it is strongly 

transitive. 

From the above theorem it is easy to prove 

the following corollary: 

Corollary (2-11): Every totally transitive 

graph map is strongly transitive. 

3. Chaotic Map: 

One of the most popular chaotic mappings 

is Devaney chaos introduced by Devaney in 

[4]. Another widely recognized indicator of 

chaotic behavior of the system is positively of 

topological entropy (see[10]). 

According to the Devaney's definition of 

chaos [4], a map 𝑓: 𝑋 ⟶ 𝑋 is chaotic if it  

transitive, periodic points are dense, and it's 

sensitive dependent on initial conditions. 

However, in graph 𝐺 if 𝑓: 𝐺 ⟶ 𝐺 is transitive 

with periodic point then the second and third of 

condition is redundant (see[9]). 

One can consider stronger notions of chaos 

by replacing transitivity by strongly transitive. 

We will go to the extreme and consider the 

strongest of those notions. we will say that is 

strong Devaney chaos if it strongly transitive, 

dense periodic point, sensitive dependent on 

initial conditions. Note that every strongly 

transitive map is transitive, so we can prove the 

following theorem. 

Theorem (3-1): Let 𝑓: 𝐺 ⟶ 𝐺 be a graph map, 

if 𝑓 is strongly Devaney chaos, then 𝑓 is 

Devaney chaos. 

The converse of above the theorem is not true 

generally, for example see (example 4 in [8]). 

On the other hand, for continuous map 𝑓 of the 

graph in to itself Miyazawa [10] introduced the 

following notion 𝜔-chaos, and showed that 𝑓 is 

𝜔-chaos  if and only if  has positive entropy. A 

subset 𝑆 of 𝑋 is an 𝜔-scrambled set for 𝑓 if, for 

any 𝑥, 𝑦 ∈ 𝑆 with 𝑥 ≠ 𝑦, the following 

condition hold[10]: 

(𝜔1) 𝜔(𝑥, 𝑓)\𝜔(𝑦, 𝑓) is uncountable. 

(𝜔2) 𝜔(𝑥, 𝑓)⋂𝜔(𝑦, 𝑓) ≠ ∅. 

(𝜔3) 𝜔(𝑥, 𝑓) ⊄ 𝑝𝑒𝑟(𝑓). 

Where the set 𝜔(𝑥, 𝑓) is an 𝜔-limit set of a 

point 𝑥 ∈ 𝑋. We say that 𝑓 is 𝜔-chaos if there 

exists an uncountable 𝜔-scrambled set of 𝑓. 

The following theorem have been proved in 

[10]. 

Theorem (3-2): Let 𝑓 be continuous map of a 

graph into itself. The following conditions are 

equivalent:    

(i) 𝑓 has positive topological entropy. 

(ii) 𝑓 is 𝜔-chaos 

(iii) 𝑓 is chaotic in the sense of Devaney. 

We can state and prove the following corollary: 

Corollary (3-3): let 𝑓 ∈ 𝐶(𝐺, 𝐺) be transitive 

map with periodic points then 𝑓 is 𝜔-chaos 

Proof: since 𝑓 transitive map with periodic 

points then by theorem (2-2), 𝑓 has positive 

topological entropy, so 𝑓 is 𝜔-chaos by 

theorem(3-2). 

The notion of distributional chaos was 

introduced in [12]. In same paper the authors 

show that the presence of distributional chaos, 

and positive topological entropy are equivalent 

for continuous interval maps. Roman Hric and 

Michal [11] showed the distributional chaos 

and positive topological entropy are equivalent 

for continuous graph maps in general. 

Theorem (3-4): Let 𝐺  be a graph and 𝑓 ∈
𝐶(𝐺, 𝐺) then the following conditions are 

equivalent: 

 (i) ℎ(𝑓) > 0, 

(ii)𝑓𝑛 has a horseshoe ,for some 𝑛 ∈ ℕ . 

(iii) 𝑓 has a basic set. 

(iv) 𝑓  is distributional chaotic. 

Chaotic in the s𝑒nse of Li-Yorke means that 

the system has an uncountable scrambled set 𝑆 

in which arbitrary (𝑥, 𝑦) ∈ 𝑆 × 𝑆: 𝑥 ≠ 𝑦 is a 

Li-Yorke pair. A pair of points{𝑥, 𝑦} ⊂ 𝑋 is 

said to be Li-Yorke pair if  

lim
𝑛→∞

inf 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) =

0  lim
𝑛→∞

sup 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) > 0  and   

Denotes the set of Li-Yorke pair of 𝑓 by  

𝐿𝑌(𝑓) = {(𝑥, 𝑦) ∈
𝑋2 : lim

𝑛→∞
sup 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) > 0, 

lim
𝑛→∞

inf 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) = 0}. In [13] the 

following theorem had proved. 

Theorem (3-5): Let 𝐺 be a graph and 𝑓 ∈
𝐶(𝐺, 𝐺), if 𝑓 has a scrambled pair, then it has a 

cantor 𝛿- scrambled set for some 𝛿 > 0. 

For graph maps, positive topological 

entropy equivalent with the existence of 

infinite 𝜔-limit set containing a periodic 

points[13]. The system (𝐺, 𝑓) is Li-Yorke 

chaotic if it has an uncountable scrambled set, 

in fact the existence of a cantor scrambled set. 

Now we can prove the following theorem: 
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Theorem (3-6): let 𝑓 ∈ 𝐶(𝐺, 𝐺) be transitive 

map with periodic points then 𝑓 is Li-Yorke 

chaotic. 

Proof: suppose 𝑓 is transitive map with 

periodic points then, by theorem(2-2), ℎ(𝑓) >
0 and by[7,TheoremB], there are closed 

intervals 𝐽, 𝐾 ⊆ 𝐺 with disjoint interiors, 

and 𝑛 ∈ ℕ  such that 𝐽 ∪ 𝐾 ⊆ 𝑓𝑛(𝐽) ∩ 𝑓𝑛(𝐾), 

then[3, pp35-37], 𝑓 has an infinite 𝜔-limit set 

containing periodic point, then there exist 

scrambled pairs in the system by theorem(3-5), 

𝑓 has a cantor 𝛿- scrambled set for some 𝛿 > 0 

this implies 𝑓 is Li-Yorke chaotic. 

From the above results, we can see that 

when the graph map is transitive and has 

periodic point then 𝑓 has positive topological 

entropy and  all type of chaos are equivalent. 

Theorem (3-7): ): Let 𝑓 ∈ 𝐶(𝐺, 𝐺) be 

transitive map with periodic points then the 

following conditions are equivalent: 

 (i) 𝑓 has positive topological entropy.  

 (ii) 𝑓 is chaotic in the sense of Devaney.  

(iii) 𝑓 is strongly chaotic. 

(iv) 𝑓 is 𝜔-chaos. 

(v) 𝑓  is distributional chaotic. 

(vi) 𝑓 is Li-Yorke chaotic. 

4. Characterization of chaos:  

A function𝑓 from a real compact interval 𝐼 

into itself is called generically chaotic[14] ,if 

the set of all points (𝑥, 𝑦) for which: 

lim
𝑛→∞

sup|𝑓𝑛(𝑥), 𝑓𝑛(𝑦)| > 0 and 

lim
𝑛→∞

inf|𝑓𝑛(𝑥), 𝑓𝑛(𝑦)| = 0, are residual in  𝐼 ×

𝐼, and we say 𝑓 is densely chaotic if this set is 

dense in  𝐼 × 𝐼. 

Now, we may generalize the generically 

chaotic and densely chaotic on graph maps: 

Definition (4-1): A function 𝑓 ∈ 𝐶(𝐺, 𝐺) is 

called generically chaotic if the set of All 

points (𝑥, 𝑦) for which: 

lim
𝑛→∞

inf 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) =

0 and  lim
𝑛→∞

sup 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) > 0, is 

residual  

in   𝐺 × 𝐺, and we say 𝑓 is densely chaotic if 

this set is dense in 𝐺 × 𝐺. If the set of all 𝑥, 𝑦 ∈
𝐺 such that: 

lim
𝑛→∞

inf 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) =

0 and  lim
𝑛→∞

sup 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) ≥ 𝛿, is 

residual in 𝐺 × 𝐺, then 𝑓 is called generically 

𝛿-chaotic and we say 𝑓 is densely 𝛿-chaotic if 

this set is dense in𝐺 × 𝐺, where 𝛿 > 0. 

It is clear the generic chaos implies 

dense chaos but not conversely (see Example 

3.1 in [14]); we can prove the following 

theorem: 

Theorem (4-2): Let 𝑓 ∈ 𝐶(𝐺, 𝐺) be transitive 

map with periodic points then 𝑓 is generically 

chaotic, moreover 𝑓 is densely chaotic. 

Proof: Since 𝑓 is transitive map with periodic 

point then by theorem (2-1), 𝑓 is totally 

transitive and by theorem (2-9), 𝑓 is wealky 

mixing. 

So ,(𝐺 × 𝐺, 𝑓 × 𝑓) is transitive ⟹ 𝑓 × 𝑓 has 

dense orbit in 𝐺 × 𝐺, then set of dense orbit is 

dense 𝐺𝛿-set. By compactness, there exist 

𝑥1, 𝑥2 ∈ 𝐺 such that 𝑑(𝑥1, 𝑥2) = 𝛿. If (𝑥, 𝑦) 

belong to the set of dense orbit, then the exist 

two subsequences (𝑛𝑖) 𝑎𝑛𝑑 (𝑚𝑖) such that:  

(𝑓𝑛𝑖(𝑥), 𝑓𝑛𝑖(𝑦)) →

(𝑥1, 𝑥2) and (𝑓𝑚𝑖(𝑥), 𝑓𝑚𝑖(𝑦)) →
(𝑥1, 𝑥1)  when 𝑖 ⟶ ∞. 

 Consequently lim
𝑛→∞

inf 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) =

0 and  lim
𝑛→∞

sup 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) > 0, that is 

all points in the set of dense orbit is residual 

and dense in 𝐺 × 𝐺. Thus 𝑓 is generically 

chaotic and densely chaotic. 

Definition (4-3)[15]: A dynamical system is  

positive expansive if there is a constant 𝜖 > 0 

with the property that, for any 𝑥 ≠ 𝑦 , there is 

𝑛 ∈ ℕ for which (𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) ≥ 𝜖. 

Theorem (4-4): Let  𝑓: 𝐺 ⟶ 𝐺 be continuous 

graph map. If 𝑓 is densely 𝛿-chaos then 𝑓 is 

positive expansive. 

Proof : Since 𝑓 is densely 𝛿-chaos, let 𝑥 ∈ 𝐺 

and 𝑈 ⊆ 𝐺 be open set, such that 𝑥 ∈ 𝑈  then 

there exist (𝑥1, 𝑥2) 𝑖𝑛 𝑈 × 𝑈,and the exist 

sequence (𝑛𝑘), such that 

lim
𝑘→∞

𝑑(𝑓𝑛𝑘(𝑥1), 𝑓𝑛𝑘(𝑥2)) ≥ 𝛿, for any ϵ <
δ

2
 , 

we have 
lim
k→∞

d(f nk(x), f nk(x1)) + lim
k⟶∞

d(f nk(x), f nk(x2)) ≥ lim
k→∞

d(f nk(x1), f nk(x2)),   

 

then   lim
k→∞

d(f nk(x), f nk(xi)) ≥ ϵ, where i = 1,2. 

That mean 𝑓 is positive expansive. 
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