MJPS, VOL. (11), NO. (1), 2024

Analysis of Undamped Oscillator Subjected to Triangular Pulse via
Gupta Integral Transform

Rahul Gupta', Rohit Gupta® *

Lecturer, Dept. of Physics, G.D. Goenka Public Hr. Secondary School, Jammu, J&K, India

2Faculty of Physics, Dept. of Applied Sciences, Yogananda College of Engineering and Technology, Jammu, J&K, India

*Corresponding author: guptarohit565@gmail.com

Received 31 July, 2023, Accepted 17 Dec. 2023, published 1 Jun 2024.

DOI: 10.52113/2/11.01.2024/28-32

ABSTRAC: An undamped (mechanical as well as electrical) oscillator subjected to a triangular pulse is generally analyzed
via ordinary methods such as calculus. In this paper, an undamped (mechanical as well as electrical) oscillator subjected to a
triangular pulse was analyzed to obtain its response via the Gupta integral transform (GT). It put forward a new technique
for obtaining the response of an undamped oscillator subjected to a triangular pulse force and proves that the GT is an

effective integral transform than calculus.
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1. Introduction well as electrical) oscillator subjected to a triangular pulse

The load F, is instantly applied to the structure and was analyzed to obtain its response via the Gupta integral
decreased linearly over time duration t; as shown in the transform (GT). It proves that the GT is an effective
figure 1. integral transform than calculus.
The GT is defined for a function of exponential order as
Fo follows:
Fol1 = tity) Considering functions in the set C defined as:

C = {g(t): IR, q1,9, >0, |gt)| < Re®®lift €
(—1DX[0,)}.

t For a given function in set C, the constant R must be a

finite number, q; and q,, may be finite or infinite.
Figure 1- Variation of load with time The GT of a function g(t) is defined [3], [4] by the
) i : integral equations as
The triangular pulse force [1] is written as: . 1 oo _
e — (1t Rig®}=G(@) =5, e g®)dt,t 20,q,<q<
t) = -— t<t
©=F ( tl) for ! q,. The variable q in this transform is used to factor the
= 0fort > t,. variable t in the argument of the function g.

The GT is a new integral transform that has been proposed
1.1. GT (Gupta Transform) of Basic Functions

% R{t"} = " wheren = 0,123 ...

qn+4- 4
% R{sinat} =

by the authors Rahul Gupta and Rohit Gupta in recent

years. It has been applied to solve many initial value
a

Farran 17 0

problems [2]. In this paper, an undamped (mechanical as
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0, > 1
% R{cosat} = Faan 17 0

1.2 GT of Unit step function

A unit step function is defined as U(t —a) = 0 for t <
aand 1 fort = a.

The GT of unit step function is given by

R{U(t—a)} = ifooe‘qt U(t — a)dt
q°® Jo

R{U(t—a)} = ifooe‘qt dt
a°Jq

R{U(t—a)} = %e‘qa

1.3 Shifting property of Gupta transform
If R{g(t)} = G(q), then

R[g(t — DU(t — d) = e"1G(q).

Proof:

Rlg(t — Ut —d) = %fwe—qu(t —dU(t —d)dt

1 (= ..
:?f e 1 g(t—d)dt
d

1 [ee]
= ?f e_q(k+d)g(k)dk,

0
wherek =t —d

1 (oo}
= e‘q(a)?f e~ g(k)dk
0

1 (o9
= e—q(d)?f e~ g(t)dt
0

= e 1DG(q)

1.4 GT of Derivatives of g(t):
R{g' (0} = 46(q) —39(0),

. 1 1
R{g"(®)} = ¢°G(q) —?9(0 —?g’(O)
and so on.

2. Methodology
2.1. Undamped Mechanical Oscillator

The differential equation of the undamped mechanical
oscillator [5], [6] subjected to a triangular pulse force is
given by

my(0) + ky(0) = F, (1 - é)
Or

t

(O + w2y =2 (1 =) ... (1)

ty

where w, = \/% , Fy(1— ti) is a triangular pulse force,
1
[71y (0)=0 and y(0) = 0.
The GT of (1) provides
1 1
7*y(q ~ 2V O~ O+ wo?y(q)
F, 1 (® t
b (1) a
mq-Jy ty
4°5(@) ~3¥(0) = —¥(0) + w5(Q) =
Fop 1 pt; _ t 0 _
B (1) s e o
Here §(q) denotes the GT of y(t).
Put y(0) = 0 and y(0) = 0 and simplifying (2), we get

Fo o1

t _ — —
=l e (D) dta’5(@) +wo’F(a)
1 [t t
L [ew() a
q° Jo ty
7*y(@) + wo*y(qQ)

1
=20 —_[eqt1—1]4+ —[e 9
(= e =10+ e ]
1 ftl .
— e 1t dt
q*ty J, }

2 + 25 — E _i —qty _ 1
q°y(q) + wo*y(q) m{ 7 [e ]

1 —qt 1 —qt
F—[emt] 4 ——[e 0 — 1]}

q°ty
Er1 1 1
2g 2g —_°|__ —qt; _
q°y(q@) + wo*y(q) m[q4+ e I
_ F, 1 1 1
y@ = —— 2 2y 2( 2 2
m q* "q(q* + we?) t1q*(q* + wy?)
e_qtl
+—
t1q*(q* + woz))
O FR1_ 1 q
m q* "q(we?) (wo*)(q*+ wo?)
1 4 1
t1 ¢*(wo?)  t1(we?)(q* + wy?)
e_qtl e_qtl
+ 2 2\ 2 2 2 }
t1 q*(wo?) ti(wo*)(g* + wo?)
@) = 2 -
Y@= i o)~ oD (@ + oD
1 4 1
t; ¢*(wo?)  t1(wo?) (g% + w?)
e_qtl e_qtl

@) L@ (E T @)

Taking inverse GT, we have
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F, 1 coswet  t sin wyt
y® = —{ 2 2 ~ T 2
m "~ (wo ) ((Uo ) tl(wo ) tiwo(we?)
t—
Ut—t)
t(@o?) ) 0 !
sin a)o(t
-————U(t—t
t1wo(wo?) ( 2
0 = F, 1 . t sinwgyt
Y= m(wo?) ¢ €08 @0 iy t1wo
t—t; Ut —t,)
T two?) '
sin a)o(t t)
-————U(t—t
t1wo(wo?) ( 2
sinwgt _ _ t—tq _
y(®) = —{m coswyt + 1 o +- ) U(t
sinwq(t—tq) _
t) @ Yt} )
Fort<t;,
sin wyt
y() = —{ — cos wyt + (1 - —) .(4a)
Fort>t;,
sinwgt _ sinw(t—tq)
y(t) = {m COS Wyt ron }... (4b)

The graph of equation (3) (takingt, = 1s, F;" =
1000m, wy = 314 rad/s) is shown in figure 2.

2000 |
1500
1000

t from 0to2)

500 H |
H | i |||” 1 i | y’u } 1 it |II Linsec!

JHH-

1000 |

Figure 2: Response of an undamped mechanical oscillator
exposed to a triangular pulse force

2.2. Undamped Electrical Oscillator

The differential equation of the electrical oscillator
subjected to a triangular pulse force potential [8, 9] is
given by

10 + 5O =1 (1-1)

Or
Q) + 0’ QM) =2 (1= ... (9)

where w, = \/E , V(1 — ti) is a triangular pulse
1
potential, Q (0) =0 and Q(0) = 0.

The GT of equation (5) provides
— 1 1 . _
7*Q(q) - r Q(0) - P Q(0) + wo*Q(q)
w1l (™ _
= f? qt (1 - E) dt
— 1 1 . —
7*Q(q) - 7 Q(0) —— Q(O) + wo?Q(q)
t1
:__fewl__d

+— | e (0)dt}
q° t
Here Q(q) denotes the GT of Q(t).

Put Q(0) = 0 and Q(0) = 0 [10-12] and simplifying (5),
we get

—Logl = St e? (1) dt —q2Q(q) + w,2Q(q)
%f;l et (Z) _dt}
7°Q(q) + w,*Q(q)
_ E{_ 1 [e=t1 — 1] + i[e““l]
L q* q*

1 (h
Z f e~ dt}
q-ti Jg

|74 1
= 2{-— [t —1]

7*Q(@) + wo*Q(q)

q*
+i4 [e941] + : [e"9tr — 1]}
q q°ty
27 27 _% —qt 1
q°Q(@) + wo"Q(q) ——[ P 1 — P
— v, 1 1 1
Q@)= f?(Q(qz + woz)t_ t19%(q* + wo?)
e qt1

* tiq*(q* + 0)02))
1 q
9(@oD) @D q% + @)
1 1
T 6 @) | 6@ ¢ + wod)
et et
'Wm%%%_um&x¢+w&)
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(@) @D (g + o)

A
Q(Q)—f—3{

}
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1 1
- +
t1 4°(@o?)  t1(wo?) (g + w?)
e_qtl e_qtl

T @) G@D(E T w?)

Taking inverse GT, we have

00 = V;,{ 1 €oS wyt t sin wyt
L (wo?) (wo?) ti(we?) tiwe(wo?)
t—t;
Ut—t)
t(@o?) !
sin a)o(t t)
-————U(t—t
t1wo(wo?) ( 2
(0 = v, 1 . t sinwyt
e = L(woz){ cos o 5] t1wg
+ T8 e
t1(wo?) !
sinwy(t —t;)
- Ut -t}
t1wo(wo?)
sinwgt _ _ t—tq _
Q) = C{ coswyt + 1 o t ) U(t
_ sinwq (t— tl) _
t)) rog(@dd) U(t t)}... (6)
Fort<t;,
sin wyt
Q) = V,C{ 2 —cosw0t+(1——) (7a)
tywo
Fort>t;,
o) = V,c{—= Smmot — cos wyt — —Sinw(t_tl)}... (7b)
t1wg
The graph of equation (6) (takingt; = 1s, V—l: =

500m, wy = 314 rad/s) is shown in figure 3 below.
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Figure 3: Response of an undamped electrical oscillator
exposed to a triangular pulse potential.
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3. Results and Discussion

It is clear from Figure 2 that due to triangular pulse, the
response (displacement) of an undamped mechanical
oscillator exposed to a triangular pulse first increases
towards right side (say) with large amplitude and then
decreases and becomes zero and then increases towards
left side with small amplitude and then decreases and
becomes zero. Again, it repeats the same behavior again
and again till the effect of triangular pulse becomes zero,
but with linearly decreasing amplitude towards right side
and correspondingly linearly increasing amplitude
towards the left side. As soon as the effect of triangular
pulse becomes zero, the nature of displacement of an
undamped mechanical oscillator exposed to a triangular
Pulse suddenly becomes oscillatory with constant
amplitude. It is clear from Figure 3 that due to triangular
pulse, the response (electric charge) of an undamped
electrical oscillator exposed to a triangular pulse first
increases in one direction with large amplitude and then
decreases and becomes zero and then increases towards
opposite side with small amplitude and then decreases and
becomes zero. Again, it repeats the same behaviour again
and again till the effect of the triangular pulse becomes
zero, but with linearly decreasing amplitude in one
direction and correspondingly linearly increasing
amplitude in the other direction. As the triangular pulse
ceases, the response of an undamped electrical oscillator
exposed to a triangular Pulse suddenly becomes
oscillatory with constant amplitude.

4. Conclusion
In this paper, the response of an undamped (mechanical as
well as electrical) oscillator subjected to a triangular pulse
was successfully determined by the Gupta integral
transform (GT). This paper exemplified the GT for
determining the response of an undamped mechanical
oscillator as well as an electrical oscillator subjected to a
triangular pulse and proves that GT is more effective
method than calculus.
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