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Abstract: The study demonstrated that noise changes the number of modes that can oscillate within the small cavity, and 

the spectral power is concentrated around the fundamental frequency. We also observed a reduction in the distortion that 

arises from the dispersive solitaire. This behaviour can be attributed to the magnitude of the pulse strength or the loss of its 

frequency due to the arbitrary interaction between the pulse train and the linear and nonlinear refractive index of the 

microcavity. The relationship between the dispersion and nonlinearity phenomena inside the microresonators is major in 

determining the inside field dynamics. The study showed that as the noise in microresonators cannot be cancelled, it is 

recommended to use a proper pulse width, intensity distribution, and power. 
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ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  
1. Introduction  

Microcavity, also known as a microresonator 

(MR), is a structure that is made by either 

bending a waveguide into a ring shape or adding 

reflecting surfaces on both sides of an optical 

medium or spacer layer. Whereas the latter is 

called a moving wave cavity, the former is 

called a stationary wave cavity. Its thickness is 

usually a few micrometers, sometimes even 

reaching the nanoscale for the spacer layer, for 

this reason, the term "microcavity" is employed. 

As with regular lasers, this setup creates an 

optical cavity or optical resonator that allows 

standing waves to develop in the spacer layer or 

traveling waves to circulate the ring. They can 

range in size from the width of hair to a few 

millimeters in diameter. Light is trapped in the 

microresonators in a way that forces it to travel 

around the resonator’s circumference. If the 

resonators are of sufficiently high quality 

(quality factors 106 to 1010), it is possible to 

store a lot of light within. Nonlinear interactions 

between the light and the microresonator occur 

at high enough intensity. This process, known as 

"four-wave mixing," which may turn a single 

hue of light into a comb with several colors [1]. 

It has been discovered that cascaded four-wave 

mixing (CFWM), processes cause frequency 
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combs to form in nonlinear microresonators [2]. 

The frequency comb's line spacing and the 

round-trip duration of inverted light in the 

micro-resonator is referred to as the FSR and, 

depending on the microresonator's free spectral 

range, can be in the gigahertz or terahertz range. 

Significant research interest has been shown in 

the optical frequency combs produced in 

monolithic high-quality factor microresonators 

[3,4]. Recently, it has been shown that 

dissipative Kerr solitons found in 

microresonators can be used to create low-noise 

and broad-frequency combs [5,6]. A soliton is a 

locally concentrated, self-reinforcing wave 

packet that keeps its amplitude and form while 

moving across a medium. In many different 

physical systems, including optics, fluid 

dynamics, and nonlinear systems, this kind of 

solitary wave can appear. 

 In the context of optics, solitons are most 

commonly observed in optical fibers [7,8]. The 

capacity of optical solitons to retain their form 

and speed across extended distances without 

attenuation or dispersion is what distinguishes 

them. In the fiber, the nonlinear and dispersive 

effects are balanced to provide this special 

characteristic. Owing to its intrinsic stability and 

harmony with the resonator's structure, the 

TEM00 Gaussian mode is frequently the mode of 

choice for soliton creation in microresonators. 

 As a result, the stability, effective coupling, and 

geometry compatibility of the TEM00 Gaussian 

mode make it a good choice for soliton 

production in microresonators. Achieving steady 

and durable soliton production in these systems 

requires the interaction of the TEM00 Gaussian 

mode with the nonlinear response of the 

microresonator. and the production of optical 

frequency combs was examined [9]. The last ten 

years have seen the discovery of rich nonlinear 

dynamics in microresonators, which include 

solitons for breathing [10], soliton crystals [11], 

Stokes solitons [12], Pockels solitons [13], laser 

cavity solitons [14], and dark solitons [15]. In 

terms of applications, soliton microcombs have 

already been successfully used for optical 

frequency synthesizers [16], astronomy [17], 

and optical coherent communications [18]. 

Almost all physical systems have some noise 

level, and depending on the type of laser being 

used, this noise may take many forms. Only 

phase/frequency and amplitude noise that is 

inherent to the laser itself occurs in single-

frequency [19] lasers. However, in a system that 

lasers at many modes at once, there is also 

mode-beating noise and mode-partition noise, 

which stand in for intermodal interference and 

random power transfer across modes, 

respectively. In the case of pulsed cavities, 

additional noise sources come into play. Timing 

jitter is one such source, which is the phase 
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difference between the carrier wave and the 

pulse envelope. Timing jitter can arise from 

various factors, including noise in the laser 

source, imperfections in the pulse generation 

mechanism, or external perturbations affecting 

the cavity [20]. 

 There are various sources of noise [21, 22], but 

generally, we can say that almost all lasers share 

at least two of these sources. Quantum noise is 

the incoherent spontaneous emission in the gain 

medium (which frequently establishes the lower 

bound for system performance), and technical 

noise is the extra noise that is generated by the 

surrounding environment, such as the control 

electronics, vibrations, temperature changes, etc. 

The repetition rate of the pulsed source can also 

contribute to noise. Any fluctuations or 

variations in the repetition rate can introduce 

timing errors or inconsistencies between 

consecutive pulses, leading to temporal noise in 

the output. Understanding and characterising 

these different types of noise is crucial in the 

design and operation of cavity-based systems, as 

they can significantly impact the performance 

and stability of various applications such as 

lasers, frequency combs, and optical 

communication systems. 

 In this work, the primary objective is to 

investigate and analyze the influence of noise. 

We approached this study from a theoretical 

standpoint by introducing additional terms or 

noise sources into the analysis. One specific 

noise source that was incorporated into the 

microresonator field is known as White 

Gaussian Noise (WGN). A random signal with a 

flat power spectral density, or one that has equal 

strength at every frequency, is called white 

Gaussian noise (WGN). Our goal is to mimic 

and account for several sources of noise that 

might impact the system's performance by 

introducing WGN into the microresonator field.  

2. Theory  

We begin our analysis of the dynamics of the 

soliton formation with a numerical simulation 

based on the lugiato-Lefever equation (LLE) 

[23], such as noise effects. In simulations of 

soliton number management by back tuning of 

the laser after production and the stability of a 

multi-soliton state, noise effects have been 

considered [24]. This model is used to examine 

the dynamics of direct soliton formation. Noise 

effects will cause an extra pump phase detuning 

in the LLE in simulations, and we represent the 

generalized LLE [25] 

       	𝐸!"#(0, 𝜏) = √𝜃𝐸$ +

√1 − 𝜃𝐸(!)(𝐿, 𝜏)𝑒'(!         (1) 

Therefore, Em+1(0, τ) is the intracavity field at 

the beginning of the (m + 1)th roundtrip, and L is 

the cavity length for the SiN microring resonator 

after the mth roundtrip. φ0 provides the 

intracavity field's linear phase accumulation for 
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the pump field during a single roundtrip, while θ 

indicates the coupler's transmission coefficient. 

It might be argued that the intracavity field 

envelope varies little between consecutive round 

trips in the limit of minimal loss. In these 

circumstances, the prior infinite-dimensional 

map can be averaged to produce the externally 

driven NLSE. [26] 

𝑡)
*+(,,.)
*,

= [−(𝛼 + 𝑖𝛿/) +

𝑖𝐿 ∑ 0"
1!
6𝑖 *

*.
7
1

134 +

𝑖𝐿𝛾|𝐸(𝑡, 𝜏)|4]𝐸(𝑡, 𝜏) + √𝜃𝐸'5     (2) 

E (t,τ ) denotes the intracavity field, the ordinary 

(fast) time variable τ is responsible for 

characterizing the temporal profile of the field, 

while the slow time-scale t governs the 

evolution of this profile over multiple round 

trips, the roundtrip duration is (tr =2Ln0/C) [27], 

Additionally, it is presumed that the field will 

follow the cavity roundtrip time, which is 

      E (t + 2, τ) = E (t, τ)       (3) 

 which determines the field's temporal profile in 

ordinary (fast) time [28]. The definitions of the 

other variables in the equation are as follows: β 

is the second-order dispersion coefficient, α = 

(αi + 𝜃)/2 describes the total cavity losses. The 

quantity δ0 = 2kπ − φ0≪1 is the order of the 

cavity resonance closest to the driving field 

being detuned by the cavity from the nearest 

resonance. The coefficient of power 

transmission, represented by k, is associated 

with the dispersion coefficients 	𝛽1 	and γ is the 

nonlinear interaction coefficient. Using the 

nonlinear Schrodinger equation (NLSE), the 

LLE is a periodic boundary condition applied to 

a damped, driven Kerr nonlinear resonator [29]. 

Significantly, a slow-varying time envelope is 

provided, which produces a mean-field solution 

that does not change in the field throughout a 

round trip. This limitation sets the LLE apart 

from the more general Ikeda map [30] and 

provides great physical representation for a wide 

range of systems while making computations 

simpler. Particularly, simulations built on the 

LLE formalism have made it possible to 

describe the production of microcombs in a way 

that quantitatively correlates with reported 

experimental results [26].  

3. Results and Discussion 
The split-step Fourier method (SSFM) was used 

to imitate the soliton dynamics within the LLE 

numerically [29].  We utilize Eq. (2) to examine 

the dynamics associated with the direct 

formation of solitons. The presence of noise 

effects introduces an additional pump phase 

detuning to the LLE during the simulations. In 

the framework of Eq. (2), MATLAB was used 

to solve the numerical simulation of the soliton 

dynamics. The simulation parameters used in 

this work are displayed in Table (1) to examine 

intensity noise. 
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Table 1: The simulation parameters used in this work 

are the typical parameters for Fused silica [26, 31, 34] 
Symbol Description Value Unit Unit 

𝜆! Lasing Wavelength 1.55 μm 

𝒏𝟐 The nonlinear refractive index 2.4 ×10-19 m2⁄W 

𝝎𝟎 the frequency of the optical cw 
pump 

193.5 THz 

𝒏𝟎 the refractive index 1.99  

𝑨𝒆𝒇𝒇 the effective model area of the 
resonator mode 

2.5×10-12 m2 

𝑸 Quality factor 1.5×106  

𝜃 the external coupling coefficient 0.03  

𝑷𝒊𝒏 input cw pump power 0.5, 1, 1.5, 2 Watt 

𝜸 nonlinearity coefficient 1.2 W−1m−1 

𝒂 total cavity losses inside the 
resonator 

0.00161  

𝜷𝟐 dispersion coefficient −4.7 × 10−26 s2m−1 

𝑳 Cavity length 428.6 µm 

𝒕𝑹 the roundtrip time 14.28 ns 

𝒂 radius 100 µm 

𝝉 Fast time 2 ps 

 

3.1. The effect of the noise and fluctuations on 
the power distribution over the resonator 
modes 
When noise is theoretically added, the 

distribution of the microresonator's output in the 

frequency range expands wider, especially at 

low values of spectral power, and the modes that 

are allowed to oscillate at a frequency farther 

from the center one also increase. While the 

shape of the output pulse is almost constant in 

the Gaussian shape without the presence of 

noise. Figure (1) shows that after adding noise, 

the output pulse (blue color) began to suffer 

distortion and drift towards frequencies lower 

than the central frequency (dispersive waves). 

meaning that as the power increased, the effect 

of the noise on the results increased, and then 

the pulse shape began to saturate and stabilize in 

an almost constant form. Starting from power 

(2W) and above. The comparison with Figure 

(2), which represents the output of the resonator 

before adding noise, allows for a visual 

comparison of the effects of noise on the pulse 

shape and spectrum. Without noise, the output 

pulse retains a Gaussian shape and does not 

suffer from the same level of distortion and 

deviation observed in the presence of noise.

  
Fig. (1): (left) OFC generated, (right) input-output pulse 

relation with noise, for input power (1, 1.5, 1.7, and 2) 

respectively. 
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Fig. (2): (left) OFC generated, (right) input-output 

pulse relation without noise, for input power (1, 1.5, 

1.7, and 2) respectively. 

3.2. The effect of the noise and the number of 

round trips within the resonator 

We note from Figure (3) that as the number of 

round trips inside the resonator increases, the 

presence of noise becomes more noticeable and 

influential. Since they indicate random or 

unwanted fluctuations in the signal, they have a 

greater impact on the system because they 

accumulate over multiple round trips. The 

introduction of noise causes the output pulse, 

represented by the blue color, to undergo 

distortion and deviate from its original shape. 

This deviation is towards frequencies lower than 

the pulse's center frequency. The phenomenon 

of the pulse deviating towards lower frequencies 

is characterized by dispersed waves. This 

suggests that the noise affects the pulse in a way 

that spreads its energy across a wider range of 

frequencies. The effect of noise on the pulse 

becomes more pronounced as the number of 

round trips (slow time) increases. This implies 

that over time, the cumulative impact of noise 

on the pulse becomes more significant. As the 

slow time exceeds (100 ns) or above, the pulse 

shape reaches a state of saturation. This means 

that the pulse stabilizes and remains almost 

constant despite further increases in the number 

of round trips. It is clear that the noise reduces 

the number of modes that can oscillate inside the 

microcavity, the spectral power is centered at 

the essential frequency, and the distortion that 

arises from the dispersive soliton is also 

decreased. This behaviour can be attributed to 

the amount of the pulses' power, or their 

frequency was lost by the arbitrary interaction 

between the train of pulses and the microcavity 

linear and nonlinear refractive index.  
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 Fig. (3): (left) OFC generated, input-output pulse relation 

(right) with noise, for input power is (2W) and slow time 

value is (10, 50, 80, 100) ns respectively. 

Figure (4) illustrates how the center frequency 

predominates when the slow time is short, how 

new modes start to emerge at the expense of 

existing modes as the number of round trips 

within the microresonator increases, and how 

dispersion causes the pulse to become wider and 

shorter in height over time. The previously 

presented Figures clearly show dispersion. 

 

Fig. (4): (left) OFC generated, input-output pulse relation 

(right) without noise, for input power is (2W) and slow 

time value is (10, 50, 80, 100) ns respectively. 

We also noticed that dispersion pulls the pulse 

in a certain direction (dispersive pulse). 

We obtain a stable pulse that can propagate over 

extended distances with dispersed spectral 

density and little distortion as time goes on and 

the number of roundtrips increases. This is 

achieved by the system reaching a single state. 
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3.3. The effect of the noise, the chirp, 
Gaussian, and super-Gaussian on the output 
of the microresonator 
    In optical transmission systems, chirped 

solitons find practical applications. Ultrashort 

pulses, consisting of very brief bursts of light, 

are used to transmit information over optical 

fibers. However, these pulses can experience 

dispersion, which causes the different frequency 

components of the pulse to spread out over time. 

This dispersion can degrade the quality of the 

transmitted signal Chirps in ultrashort pulses can 

either be positive or negative. A positive chirp 

means that the higher-frequency components 

arrive before the lower-frequency components, 

while a negative chirp indicates the opposite. 

The presence of chirp alters the pulse's temporal 

profile, affecting its propagation characteristics 

through the transmission medium. By 

manipulating the chirp of the ultrashort pulses, it 

is possible to mitigate the dispersion effects and 

enhance the quality and reach of optical 

communication systems. 

The frequency chirp in the pulse has a 

significant influence on its optical 

characteristics. In the anomalous dispersion 

regime, which is the operating regime of the 

resonator, there exist simple relationships 

between various pulse parameters such as 

energy (E), pulse duration (T), and peak power 

(P0), as well as oscillator parameters including 

the net group delay dispersion coefficient (β) 

and the self-phase modulation coefficient (γ). 

To prevent pulse instability, peak power P0 must 

be maintained below a threshold value of Pth. 

This means that to scale energy, a pulse must be 

stretched, and this can only be achieved by a 

significant dispersion increase [35]. 

               𝐸 = 2$|𝛽|𝑃./ 𝛾⁄             (4) 

In our investigation, we focus on using a 

particular type of resonator known as a second-

order dispersion-controlled Kerr resonator for 

the same parameters as in Table (1). This 

resonator can exhibit abnormal dispersion, 

meaning it can cause the pulse to spread out 

over time. To control the chirping effect, we 

introduce a parameter called C. This parameter 

allows us to manipulate the linear frequency 

chirp applied to the pulse. By adjusting the value 

of parameter C, we can influence the extent of 

chirping in the pulse. We analyze the effect of 

the initial chirp on the Gaussian pulse during its 

propagation in a microresonator at a wavelength 

of 1550 nm. The chirped Gaussian pulse, which 

we use to begin this topic, is provided by [29] 

       𝑈(0, 𝑇) = 𝑈0𝑒𝑥𝑝 3−
(2345)
7

	8
!

8"!
6                  (5) 

The pulse envelope's internal frequency change 

is described by the chirp parameter C. The 

Lugatio-Lefever equation has to be solved to 

provide a comprehensive description of all 
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influences that impact the propagating signal. 

The studies of femtosecond pulse propagation 

such as in [36] served as the foundation for our 

simulation. 

As shown in Figure (5), this equation reduces to an 

unchirped Gaussian pulse, represented by Eq. (6), if  

C = 0.   

 U(0, T) = U0	exp 3−	
:!

7:"!
6           (6) 

This is because anomalous dispersion regimes 

combine the effects of loss, dispersion, and 

nonlinearity to produce an initially un-chirped 

Gaussian pulse (C = 0), This represents the 

TEM00 of the Gaussian beam.  

Fig. (5): (left) OFC generated, (right) input-output pulse 

relation with noise and without chirp (C=0), for input 

power, is (1, 1.2, 1.7) W respectively 

 

Fig. (6): (left) OFC generated, input-output pulse relation 

(right) with noise and chirp effects together, for input 

power is (1, 1.2, 1.7) W respectively. 

When looking at Figure (6), we can 

examine how the left optical frequency comb 

(OFC) with combined noise and chirp effects, as 

well as different input power levels, creates the 

input-output pulse relationship and assess its 

impact on the accurate input-output pulse 

relationship. The input-output pulse relationship 

on the right side may be impacted by noise and 

chirp effects in the system in several ways such 

as pulse distortion: The noise and chirp together 

can deform pulses, changing their duration and 

shape. While chirps can induce frequency-

dependent changes in the pulse envelope, noise 
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can result in random oscillations. When 

compared to the input pulses, these effects may 

result in distorted or widened output pulses. In 

addition to the Chirp-induced frequency shift: 

When comparing the output pulses to the input 

pulses, there may be a frequency shift brought 

on by the chirp effect. The chirp's frequency-

dependent fluctuation in the pulse envelope is 

what causes this shift. As a result, there may be 

a difference between the input and output pulses' 

centers of frequency. The impact of noise and 

chirp effects on the input-output pulse 

relationship might be more noticeable at greater 

input power levels. Pulse abnormalities may get 

worse. 

In Figure (7), we focused on studying the 

effect of noise on the output of two types of 

pulses: Gaussian pulse and super-Gaussian 

pulse. The left side of the graph (“a”) represents 

the Gaussian pulse, while the right side (“b”) 

corresponds to the super-Gaussian pulse. 

A Gaussian pulse has a bell-shaped waveform, 

while a super-Gaussian pulse is a more complex 

waveform containing additional waves. Both 

pulses had the same pulse width, specifically 

1ps. By analyzing the results shown in Figure 

(7(“2b”)), we observed a decrease in the pulse 

width of the super-Gaussian pulse. This decrease 

is due to a phenomenon called negative 

feedback resulting from stimulated emission 

(stimulated emission refers to a process in which 

photons stimulate the emission of additional 

photons in the material, amplifying the optical 

signal). In this case, the carrier density, which 

represents the number of charge carriers in the 

material, was modified by stimulated emission. 

The negative feedback mechanism generated by 

stimulated emission plays a crucial role in 

regulating the carrier density. As a result, it 

tends to suppress fluctuations in pulse 

amplitude, ultimately resulting in a narrower 

pulse width. 

Overall, the study showed that the presence of 

additional waves in the ultra-Gaussian pulse, 

combined with the negative feedback effect of 

stimulated emission, contributed to a more 

stable and narrower pulse compared to the 

Gaussian pulse. 

 

Fig. (7): OFC generated (left), input-output pulse relation 

(right) Gaussian pulse with noise (a) compared to super-



MJPS,   VOL. (11),   NO. (1),   2024 

 

58 
 

Gaussian pulse with noise (b), for input power is (1, 1.2, 

1.5) W respectively. 

4. Conclusion 

We utilized a computational procedure, 

viz., the Lugatio-Lefever equation (LLE). A 

term was added to the LLE to include the noise 

effect on the microresonator dynamic.  We used 

this term to control the levels of noise in our 

simulations to observe its impact on the 

formation and behavior of solitons and OFCs 

generated. It is noticed that noise affects the 

stability of the microresonator. The noise-optical 

input power relation showed that the noise effect 

was proportional to the input power. In 

conclusion, to reduce the noise effect on the 

microresonator, it must be run with an input of 

lower power, TEM00 Gaussian mode. The study 

also examined the effect of noise, chirp, 

Gaussian, and super-Gaussian on the output of 

the microresonator. The study showed that there 

is a difference between the frequency centers of 

the input and output pulses. The effect of noise 

and chirp effects on the input-output pulse 

relationship may be more pronounced at larger 

input power levels. pulse disturbances may 

worsen. 
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