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Abstract: Gastrointestinal (GI) endoscopic examinations can detect various GI issues early. Challenges like high intra-class 

variability, moderate differences between classes, and biased data complicate automated classification. The study analyzes 

frequency-dependent image features in classification results, focusing on similarities within and between classes to better 

understand the dataset and identify the most difficult classes to classify. It uses a similar approach for similarity analysis 

with Discrete Wavelet Transform (DWT), breaking images into low-frequency (LL) and high-frequency (HH) sub-bands 

based on frequency ranges. Structural Similarity Index Measure (SSIM) and Mean Squared Error (MSE) inter- and intra- 

class similarities. Functional validation involved a classification test using the Random Forest (RF) model. Experiments on 

multiple GI endoscopic datasets illustrate that LL sub-bands, capturing coarse structural features, provide higher 

discriminative power and improve classification accuracy, while HH sub-bands, preserving fine textures, are less effective 

due to higher inter-class similarity. Analysis of similarity measures highlights classes with high intra-class variability, 

particularly minority classes, as the most challenging for classification. The frequency-aware similarity approach enhances 

interpretability, reveals dataset-specific issues, and automates the evaluation of gastrointestinal images. 

Keywords: Gastrointestinal Endoscopic Image, Intra-Class Similarities, Discrete Wavelet Transform. 
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 ـ

1. Introduction  

Similarity measure compares the distance (by a 

selected norm) between the data points in order 

to estimate the level of similarity between two 

images. Similarity is the extent of resemblance 

of two images. A powerful similarity measure is 

greatly reliant on the choice of the distance or 

comparison function. In medical imaging 

particularly endoscopy, analysis of image 

similarity is essential in order to improve 

diagnostic and classification of medical imaging 

[1]. Understanding the image resemblance or 

variance of patterns among classes of diseases 

could provide information on the fairness of 

image qualities and inherent complexity of the 

classification task. Consequently, scholars have 

paid more and more attention to the 

development of similarity measures determining © Oleiwi, et al., 2025. This is an open-access article 
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the visual attributes that have the most 

significant effect on automated decisions [2]. 

The research problem is clarified in persistent 

scanty research has been done on the inter-class 

similarity of large-scale gastrointestinal (GI) 

endoscopic image data. Automatic classification 

is a problem due to the similar visual features of 

disease groups with slight variation. 

Conventional measures of similarity are based 

on structural or perceptual consistency. But 

These measures tend to overlook frequency 

based variations which are important in 

differentiating visually similar classes. 

The contributions of this proposed study will 

solve these issues by proposing a wavelet-based 

frequency decomposition of GI images into low-

frequency (LL) and high-frequency (HH) sub-

bands. The inter-class similarity is quantified in 

both LL and HH band to determine where 

similarities exist, in general content or structural 

intricacies, and how well the classification is 

complex by identifying which frequency bands 

have the strongest discriminative features. This 

framework that utilizes frequency-sensitive 

information classifies classes with inherently 

greater intra-class variability or subtle inter-class 

differences, costs less to compute and has less 

data dimensionality, and improves the 

performance, efficiency, and interpretability of 

classifiers in automated GI image classification. 

1. Related Works 

Wang et al. [3]. created SSIM in 2004, and the 

approach symbolizes a drastic departure of 

traditional error-based approaches to 

perceptually pertinent, structure-based 

evaluation. The SSIM is used to measure the 

brightness, contrast and structural coherence of 

the images and there is a great relationship with 

human perception. In spite of its massive 

success in determining image quality, SSIM is 

heavily space-based and does not adequately 

represent finer frequency-based variations that 

prove vital in medical-imaging, wherein high-

frequency features often hold vital clinical 

details. 

The FSIM that was presented by Zhang et al. 

(2011) [4] combined low-level data, such as 

phase congruence and the magnitude of 

gradient, to enhance the discriminative analysis. 

FSIM demonstrated strong results on most 

benchmark data. But in the case of SSIM, FSIM 

works mainly in the spatial field. Other 

approaches are edge detection within similarity 

assessment, such as the Feature-Based Structural 

Measure (FSM) by Shnain, Hussain and Lu 

(2017) [2], which enhances facial picture 

recognition. Although FSM is effective, it also 

focuses on conspicuous edges and spatial 

characteristics without being able to analyze 

frequency bands individually, and therefore its 

direct use to inter-class classification in medical 

imaging, where high-frequency variations are 
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often critical. Ineffectively resolves frequencies, 

which may ignore small but significant 

differences in high frequency textures or 

complicated structures. 

These findings are supported by recent 

assessments of medical image analysis. Liu et al. 

(2021) [5] identified the following gaps to deep 

learning-based medical segmentation, such as 

the lack of frequency-domain information 

utilization, inter-class similarity, and intra-class 

variability. By illustrating that a wavelet-based 

feature can increase the accuracy of diagnosis of 

pneumoconiosis images based on their 

frequency-domain analysis [6], Wang (2022) 

identified the importance of frequency-domain 

analysis. Although the authors of the article 

focused their research on selecting the 

methodologies that suit certain datasets, Sai 

Kiran and Areeckal (2025)  [7] showed that 

wavelet-based texture analysis enhances 

classification in osteoporotic X-ray 

images.Taken together, these studies indicate a 

specific trend: feature-based, as well as spatial-

domain similarity measures are suitable in 

perceptual assessment. They may not be capable 

of the fine, frequency-specific variations 

required to conduct an accurate medical 

classification. Following this revelation, the 

present paper proposes a frequency-band-based 

similarity analysis through a wavelet 

decomposition. 

2. Proposed Methodology Framework  

In this section, the proposed framework that is 

expected to evaluate the inter-class similarity 

and complexity of gastrointestinal endoscopic 

images is described. The main objective is to 

find out which of the frequency bands (low or 

high) offers the most distinguishing 

characteristics to use in classification tasks. The 

method combines frequency decomposition 

using wavelets, statistical similarity 

measurement to select the best frequency bands 

to classify. 

3.1 Dataset Description  

Figure (1) displays a sample analysis of a 

contemporary gastrointestinal endoscopic 

dataset of multiple disease types performed 

as a suggested analysis. There are numerous 

photos of different clinical situations in each 

of the classes. The available set of 

gastrointestinal (GI) endoscopic imaging has 

been used in this work that combines a wide 

range of diseased and normal conditions 

around the digestive tract. It is a set of 8,000 

high-resolution endoscopic images of the 

upper and lower gastrointestinal tract 

including the esophagus, stomach and colon. 

The assortment includes 27 distinct 

categories each with a specific 

gastrointestinal disease or condition. These 

classes comprise a broad range of anatomical 

points, clinical, and clinical anomalies, 

Fig. (1): Dataset distribution over 27 classes 
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normal mucosal appearances, and instances 

of polyp excision, hence provide a 

comprehensive presentation of the real 

endoscopic variations [8].

 

Fig. (2): Dataset distribution over 27 classes.

The images were captured through various 

endoscopic systems in varying lighting and 

viewing conditions. So, variability in imaging is 

usually common in clinical practice. Such 

variability will ensure that the dataset will 

include both diseased properties and natural 

intra-class variation and inter-class similarity 

within real-world medical images. 

The collection contain an equal number of 

diseased cases and normal cases. This 

distribution is a good standard of classification 

algorithms, similarity measures, and frequency-

based analytical processes. The diverse visual 

characteristics of the classes make it particularly 

suitable when analyzing image similarity, 

discriminability, and classification difficulty and 

these are the main goals of the given research 

[9]. 

Wavelet Decomposition 

Wavelet transform is a method of multi-

resolution analysis which represents an image at 

the same time in both spatial and frequency 

domain. This representation allowing a detailed 

consideration of the textures, edges and changes 

in illumination. Unlike in Fourier Transform, 

which can only provide global frequencies of an 

image, the Discrete Wavelet Transform (DWT) 

divides an image into hierarchical sub-bands and 
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retains both spatial localization and frequency 

content[10]. 

The separable low-pass and high-pass filters 

used on rows and columns of an image in using 

the two-dimensional discrete wavelet transform 

(DWT2) are sequential. The process produces 

four groups of coefficients at each 

decomposition stage, one low-pass group, 

known as the Approximation Coefficients (A or 

LL) and three high-pass groups, known as the 

Detail Coefficients (LH, HL, HH), which are the 

vertical, horizontal and diagonal orientations, 

respectively. The LL band (Low-Low) 

maintains the coarse structure of an image and 

the overall illumination whereas the HH band 

(High-High) captures fine details such as edges, 

fine textures, and local contrast variations. 

Vertical and horizontal details information is 

included in the LH and HL subbands. The 

down-sampling procedure of the DWT ensures 

that after each filtering the number of 

coefficients is halved in each dimension. This 

reduces redundancy of data and enhances a 

hierarchical arrangement where the lower levels 

contain generalized attributes whereas the high 

levels preserve specifics [11]. 

This decomposition can be iterated across 

numerous layers (L levels) to achieve 

progressively abstract representations of the 

visual structure. All images in this study were 

broken down using the DWT to produce multi-

resolution representations. We examined two 

main subbands:-  

-LL (Low–Low): encompasses the low-

frequency elements, representing the entire 

configuration and illumination. 

-HH (High–High): encompasses high-frequency 

components associated with edges, textures, and 

intricate features. 

This decomposition provides insights into 

frequency-level changes in structural similarity 

and visual complexity by independently 

analyzing similarity patterns between the 

detailed (HH) and coarse (LL) information 

domains. 

3.2 Similarity Measurement 

The similarity of the image pairings among 

different classes was measured on the basis of 

two complementary and known values: Mean 

Squared Error (MSE), which is the measure of 

pixel-level distance, and Structural Similarity 

Index (SSIM), which is the measure of 

perceptual distance [2]. 

The Mean Squared Error for two image sub-

band arrays X and Y of size N is defined as 

[12]: - 

MSE(X,Y)= !
"
∑ (𝑋# − 𝑌$)$"
#%!          (1) 

The MSE offers a straightforward and 

comprehensible metric for the average 

difference between matching pixel values; lower 
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MSE values signify greater similarity across 

images. To find the MSE on the wavelet sub-

bands, each sub-band is first min-max scaled to 

a uniform range (e.g., [0,1]). This ensures that 

MSE values can be compared across different 

pictures and sub-band types. The normalization 

was executed via Eq. (2) [13]. 

𝑥&'() = *+,-.	(*)
,23(*)+,-.	(*)

                 (2) 

The Structural Similarity Index (SSIM) is 

defined in Eq. (3) as : - 

𝑆𝑆𝐼𝑀(𝑋,Y)= ($4!4"56#)($7!"56$)
(4!

$54"
$56#)(7!

$5	7"
$56$)

      

(3) 

The constants 𝐶!and 𝐶$	are defined as follows: 

𝐶! = (𝐾!𝐿)$, 𝐶$ = (𝐾$𝐿)$ 

𝐾!and 𝐾$	are significant constants, while 

L equals 255, the maximum pixel value 

[14]. 

SSIM can be calculated on a local level with the 

help of a Gaussian-weighted sliding window, 

which is averaged across the whole image to 

obtain a single global similarity index. 

Similarly, the normalized map of coefficients of 

the wavelet sub-bands (LL and HH) is processed 

using a windowed operation, and data-range is 

1.0 to produce similar and comparable values of 

SSIM across various frequency bands. 

3.3 Proposed Similarity and 

Complexity Assessment Technique 

To increase the capacity to discriminate and 

inter-class separability between gastrointestinal 

tract images, a composite similarity-complexity 

analysis methodology was created that improved 

the capacity to discriminate and interclass 

differentiation. Besides applying the wavelet-

based subband decomposition and pair-wiser 

similarity analysis method. A methodological 

workflow diagram was demonstrated the broad 

sequence of suggested methods as in Figure (2). 
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Fig.  (3): Proposed Frequency-Based Similarity and Classification Framework Workflow 

Step1. Image preprocessing: During this step, a 

conversion into grayscale followed by resizing 

all the images to 128X128 pixels was done so 

that the spatial resolution of each image in the 

collection remained similar. This is done by a 

normalizing process so that the samples all have 

the same dimensionality, making sub-band 

coefficients comparisons easier. Also, the 

scaling maintains valuable structural data that is 

essential in disease classification and reducing 

computational expenses. 

Step2. Pairwise Similarity Computation: 

Similarity score was calculated in pair-wise 

variables according to the Discrete Wavelet 

Transform (DWT) of each image pair of 

different classes, according to the low-frequency 

(LL) and the high-frequency (HH) sub-bands. 

Each of the preprocessed images was 

decomposed using Haar mother wavelets, i.e. 

Discrete Wavelet Transforms (DWTs). The Haar 

wavelet was chosen because it is 

computationally simple, orthogonal and highly 

separates low frequency structural information 

and high frequency detail. Haar gives a localized 

and sharp basis, so it is especially useful on 

medical images like gastrointestinal endoscopy, 

where sudden changes in intensity are 

significant anatomical boundaries. Also, the use 

of rectangular step-shaped basis functions in 

Haar enables it to be easily decomposed at very 

low cost, a feature necessary when computing 

large volumes of images, using extensive 

comparisons of pairwise similarities. A non-

redundant representation has the advantage of 

leaving in LL sub-bands only those global 

structural components necessary to evaluate 

inter-class separability, and in HH sub-bands, 

only fine detail that can be used to measure 

intra-class variability. Since the main task of the 

study was to determine the strength of 
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discriminatory stimuli over frequency bands and 

the extent of inter/intra-class similarity, Haar 

was the best fit with the aim of carrying out this 

exploratory study as it provided an ideal ratio of 

interpretability, efficiency, and robustness. 

Two related similarity indices were applied, 

Mean Squared Error (MSE), used to measure 

pixel-wise differences between sub-bands and 

Structural Similarity Index (SSIM) used to 

measure perceptual similarity using brightness, 

contrast and structure. Each of the sub-bands 

was then normalised using the min-max scaling 

to the range of [0,1], thus ensuring that the 

bands and classes are comparable. Solved the 

zero-variance case by replacing a zero matrix 

with a zero array to prevent similarity 

calculation instability. 

Step3.  Aggregation of Similarity Results: All 

image permutations in the LL band and HH 

band were determined and the SSIM and MSE 

calculated separately per class pair. Aggregated 

scores are statistically the average similarity of 

perception and structural difference in classes. 

The data were summarized and presented in a 

way that indicates how inter-class similarity is 

different in low and high frequency domains. 

Step4. Frequency Band Selection: Comparative 

SSIM values between the HH and LL 

components were used to determine the 

appropriate sub-band in which the image should 

be classified as demonstrated by the similarity 

analysis in frequency bands. A less similar 

demonstration of the LL band than the HH band 

indicates that more features of low frequencies 

(global forms and smooth patches) are 

differentiated between classes; the LL sub-band 

is therefore selected as the input to the classifier. 

On the other hand, in the case where the HH 

band shows reduced similarity, high-frequency 

textures and edges have stronger discriminative 

signals, which causes the choice of HH sub-

band. In similar case when the similarity within 

a band is approximately moderate (e.g. close to 

0.5) it often indicates confusing structural 

overlap between classes and makes 

discrimination difficult. 

In particular, in the case when a substantial 

resemblance is observed in the LL band, the 

process of classification becomes more difficult 

as a strong resemblance in low-frequency 

structures would signal similar global 

morphology among the classes leading to 

reduced separability. On the other hand, high 

similarity in the HH band is not important, since 

this is commonly an indication of superficial 

textures and not fundamental similarities in 

structure. 

Frequency bands with lower similarity are 

usually preferred, as this would capture more 

unique and discriminative information, and, 

thus, better class separation and better 

classification. 
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3.4 Evaluation Strategy 

To verify the proposed similarity-based 

complexity analysis, the results were compared 

with traditional similarity methods (SSIM-only 

and MSE-only). The assessment was developed 

to: - 

• Determine which bands (low or high 
frequency) exhibit the greatest 
discriminative potential. 

• Examine how classification difficulty 
and inter-class similarity relate to one 
another. 

The evaluation and comparison were 

subsequently structured into two complementary 

scenarios: - 

• Intra-class similarity assessment: The 

initial scenario assesses the proposed 

technique by quantifying intra-class 

similarity, namely the degree of 

similarity across pictures within the same 

class, to examine internal class 

consistency and variability.  

This elucidates the internal composition of each 

category and its impact on categorization 

complexity. 

• Classification performance-based 

functional similarity validation: The third 

scenario involves carrying out a 

controlled classification using multiple 

classifiers on different representations of 

data.  

The raw images are first classified and then the 

individual classification of the LL and HH sub-

bands are carried out. Results obtained in the 

form of accuracies and patterns of confusion are 

analyzed to determine the most common 

misclassifications and their association with 

complexity results according to similarity. 

Specific focus was given to the imbalance in the 

classes and limited access to the data in certain 

GastroVision categories. As a result, the 

frequency bands (LL and HH) were evaluated 

separately to determine whether one of the 

bands gives more categorization results. The 

obtained results were then contrasted with the 

suggested band-selection method to determine 

whether the frequency band determined as more 

discriminative through the similarity analysis 

truly produced better classification. It is a multi-

stage test, a functional contrast, which explicitly 

connects similarity-based complex analysis with 

quantitative categorization outcomes, which 

justifies not only the interpretability but also the 

practical importance of the suggested method. 

3. Results and Discussion 

This section breaks down and examines the 

experimental data derived from the suggested 

similarity-based complexity evaluation and its 

validation via classification performance. The 

analysis intends to: - 
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• Measure the variation of similarity 
between frequency sub-bands (LL and 
HH). 

• Analyze the correlation between these 

similarity patterns and class separability 

as well as the challenges of 

classification. 

4.1 Intra-class and Inter-class Similarity 

Patterns 

In this sub-section, this method given the 

average and distributional similarity measures 

(MSE and SSIM) of the LL and HH sub-bands 

across all 253 combinations of class pairs which 

are formed out of the 23 used classes. Though 

the initial dataset has 27 classes, four of them 

were not subjected to analysis because of their 

inadequate sample sizes. Such classes were 

under-represented which would have resulted in 

unreliable calculation of frequency-based 

similarity measures and would have produced 

unreliable or biased statistics. Thus, it analyzed 

the rest 23 classes, which give sufficient 

representation in calculating the similarity of LL 

and HH among all the 253 combinations of 

classes. The results showed the differences in 

internal homogeneity (intra-class) and the 

mutual separability (inter-class) among classes, 

and the frequency bands that provide more 

effective discriminative indicators. The average 

values of SSIM within the LL sub-band of each 

class pair combination are presented in Figure 

(3). The reduction in the values of SSIM means 

that there is less structural similarity among 

classes, which points to an increased 

discriminative capacity in the low-frequency 

domain. 

 

Fig.  (4):   Mean Structural Similarity (SSIM) over the LL sub-band for all class pair combinations 
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Figure (4) depicts the average SSIM values 

calculated for the HH sub-band across all 253 

class pair combinations. The results elucidate 

the high-frequency similarity behavior, 

emphasizing discrepancies in textural and edge-

based discriminative information across various 

gastrointestinal states. 

 

 

Fig. ( 5): Mean Structural Similarity (SSIM) over the HH sub-band for all class pair combinations 

Figure (5) summarizes the average inter-class 

Mean Squared Error (MSE) values for the LL 

(low-frequency) and HH (high-frequency) sub-

bands over all 253 class pair combinations. 

Reduced MSE values signify more pixel-level 

similarity between class pairings. The HH sub-

band typically has elevated MSE values, 

indicating heightened sensitivity to subtle 

textural differences, while the LL band 

encompasses more extensive structural 

similarities. 

 

Fig.  6:  Comparison of mean inter-class MSE values between LL and HH sub-bands.
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The results suggest that similarity values of the 

low-frequency (LL) bands are worse than that of 

the high-frequency (HH) bands, whereas the 

values of the Mean Squared Error (MSE) are 

very high in the LL bands. 

This can be interpreted to mean that HH bands 

are more similar across classes, and the LL 

bands have greater inter-class diversity. 

The similarity is also present, which suggests 

classification problems of some pairs of classes, 

but, overall, the similarity values are lower in 

the LL bands, which makes them more useful to 

classification, as they have more efficient 

discriminative representation to all combinations 

of classes. 

Table (1) demonstrates the statistical qualities of 

the processed similarity measures (SSIM and 

MSE) of all 253 combinations of classes-pair 

involving the two sub-bands (LL and HH). 

Table 1: Illustrates the statistical attributes of the calculated similarity measures (SSIM and MSE) across all 
253 class-pair combinations for both LL and HH sub-bands 

Statistic Average SSIM 
(LL Sub-band) 

Average SSIM 
(HH Sub-band) 

Average MSE 
(LL Sub-band) 

Average MSE 
(HH Sub-band) 

Minimum 
value 

0.1209 0.2310 0.0591 0.0076 

Maximum 
value 

0.3216 0.4736 0.1193 0.0203 

Mean value 0.1757 0.3082 0.0872 0.0113 

They indicate that the values of the SSIM are 

always lower in the LL bands (mean= 0.1757) 

than in the HH bands (mean = 0.3082), and that 

there are few similarities and high 

discriminative capacity within the low-

frequency domain. In the meantime, the MSE 

values are greater in the LL bands (mean = 

0.0872), which suggests that more classes of 

variance would be found in the LL subbands. 

On the other hand, the HH bands are more 

similar (SSIM) and less reconstruction error 

(MSE) which is an indication that high-

frequency bands retain more shared structures 

and textures across classes. Such findings 

confirm the earlier finding that LL sub-bands 

are more effective in classification since they 

exhibit less inter-class similarities and more 

variabilities hence more category separability. 

The intra-class similarity statistics of the entire 

23 categories in the sample are shown in Table 

2. The results show that SSIM values are higher 

in the HH sub-bands than in the LL sub-bands in 

most of the intra-class couples indicating that 

high-frequency components maintain more 

similarity among the structures in the same 

class. Conversely, the MSE values are high in 

the LL sub-bands, which implies that the low-

frequency components have a higher degree of 

variability and less similarity. 
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Table 2: Similarity metrics (SSIM and MSE) for intra-class couples within LL and HH sub-bands 

Pair SSIM_LL SSIM_HH MSE_LL MSE_ HH 

Barretts esophagus vs Barretts esophagus 0.3630 0.3998 0.0848 0.0117 
Dyed-lifted-polyps vs Dyed-lifted-polyps 0.2549 0.4008 0.0656 0.0079 
Ileocecal valve vs Ileocecal valve 0.2143 0.2885 0.0745 0.0098 
Normal mucosa and vascular pattern in the large 
bowel vs Normal mucosa and vascular pattern in the 
large bowel 

0.2667 0.3325 0.0545 0.0095 

Cecum vs Cecum 0.2946 0.3186 0.0424 0.0095 
Accessory tools vs Accessory tools 0.2193 0.3162 0.0716 0.0123 

Duodenal bulb vs Duodenal bulb 0.2964 0.3584 0.0775 0.0173 

Small bowel_terminal ileum vs Small 
bowel_terminal ileum 0.1922 0.2909 0.0820 0.0146 

Resected polyps vs Resected polyps 0.2270 0.3246 0.0688 0.0092 

Gastric polyps vs Gastric polyps 0.1831 0.3076 0.0875 0.0173 
Esophagitis vs Esophagitis 0.3084 0.4720 0.0652 0.0113 

Retroflex rectum vs Retroflex rectum 0.2374 0.3794 0.0749 0.0132 

Normal esophagus vs Normal esophagus 0.4112 0.5511 0.0646 0.0057 
Normal stomach vs Normal stomach 0.1980 0.3488 0.0926 0.0116 
Dyed-resection-margins vs Dyed-resection-margins 0.2720 0.3662 0.0539 0.0084 

Mucosal inflammation large bowel vs Mucosal 
inflammation large bowel 0.2083 0.2978 0.0774 0.0135 

Resection margins vs Resection margins 0.2714 0.4103 0.0662 0.0068 
Blood in lumen vs Blood in lumen 0.1764 0.2835 0.0905 0.0086 
Colorectal cancer vs Colorectal cancer 0.2178 0.2912 0.0643 0.0105 

Gastroesophageal_junction_normal z-line vs 
Gastroesophageal_junction_normal z-line 0.3113 0.4723 0.0713 0.0127 

Pylorus vs Pylorus 0.3177 0.3767 0.0552 0.0165 

Colon polyps vs Colon polyps 0.2539 0.3428 0.0577 0.0111 

Colon diverticula vs Colon diverticula 0.2092 0.3422 0.0616 0.0101 

Table (3) illustrates that the intra-class similarity 

measures reveal SSIM values are predominantly 

elevated in the HH subband relative to the LL 

subband, whereas MSE values are more 

pronounced in the LL subband. This indicates a 

higher resemblance in the high-frequency 

components and more discernible distinctions in 

the low-frequency components, offering insights 

into intra-class variability, which may also aid in 

further categorization with other classes. 

Table 3: Comparison of Similarity Metrics (SSIM and MSE) for LL and HH Sub-bands within Intra-class Pairs 

Statistic Average SSIM 
(LL Sub-band) 

Average SSIM 
(HH Sub-band) 

Average MSE 
(LL Sub-band) 

Average MSE 
(HH Sub-band) 

Minimum 
value 

0.1764 0.2835 0.0424 0.0057 
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Maximum 
value 

0.4112 0.5511 0.0926 0.0173 

Mean value 0.2567 0.3597 0.0698 0.0113 

Intra-class analysis of the LL sub band indicates 

that the value of SSIM is comparatively low; 

nevertheless, the value of MSE is considerably 

high. That is, even components of the same 

category existing at low frequency have 

significant differences; this is an indication of 

differences in general structure, texture, or light. 

Such variation denotes intra-class variance, 

which is a crucial variable to reach the 

classification models or determine the 

homogeneity of the classes. 

In order to examine the reliability of the 

proposed method of similarity assessment, we 

point out that the values of intra-class similarity 

(within the same class) are usually larger than 

inter-class similarity. This is expected, because 

all of the photos are of the same class, as it is in 

keeping with the properties of medical images in 

such gastrointestinal dataset, where photos of 

similar anatomical or pathological classes share 

inherent structural and textural features. 

The intra-class heterogeneity is effectively 

captured by the proposed similarity evaluation 

method as can be observed by the results in 

Tables 2 and 3. This difference in the values of 

SSIM and MSE within a single group can be 

explained by the fact that there is a biological 

and anatomic diversity in gastrointestinal 

medical pictures. This variable is an indicator of 

the accuracy and reliability of the proposed 

similarity measurement method, how it is 

sensitive to subtle differences within the same 

class, thus making the classification models 

better at analyzing gastrointestinal data. The 

current observation aligns with the recent study 

conducted by Cambay et al. (2024), that 

highlights the fact that intra-class variability is 

an issue of significant issues in medical picture 

classification, particularly in the gastrointestinal 

domain. The authors in the research attribute 

this variation to other factors such as difference 

in lighting, imaging angles, and heterogeneity of 

the tissues and this necessitates consideration of 

this variability in the designing of the 

classification algorithms [15]. 

4.2  Classification-based Functional 

Evaluation 

The findings of RF of images of LL and HH are 

provided in this section. Performance measures 

(accuracy, recall, precision, and F1-score) are 

contrasted with the similarity based complexity 

predictions to establish whether classes with 

higher similarity exhibit lower classification 

accuracy. The effect of class imbalance and 

limited sample diversity in GastroVision dataset 

is also discussed to put the classification 

performance into context. 
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The RF model was used in every classification 

experiment in a controlled setup to ascertain 

consistency and interpretability of frequency-

band testing. In particular, the trees size (n 

estimators) was to be 10, which is lightweight 

but expressive enough to detect simple decision 

patterns without creating too many 

computational costs. Such a small sample size of 

trees is consistent with the exploratory nature of 

this analysis where the most important goal is to 

compare the discriminative roles of the LL and 

HH sub-bands as opposed to optimizing the 

level of model performance. Moreover, a fixed 

random seed (42) allows getting a complete 

reproducibility of all classification outcomes. 

This controlled environment enables the 

differences observed in the performance of the 

various frequency sub-bands to be associated 

with the properties of the data instead of 

differences in the complexity of the model. 

In order to obtain a similar and representative 

assessment, an 80/20 train and test split was 

applied to the data. The stratification sampling 

strategy was used in order to maintain the 

original proportions of classes in both subsets, 

which is specifically necessary due to the high 

imbalance of the dataset. A fixed random seed 

(42) has been used to split to ensure the 

reproducibility of the experiments is complete. 

The stratification was used to maintain the 

original distribution of classes and to obtain a 

fair assessment because the imbalance of classes 

in the data is enormous. 

Cross-validation was not used due to the main 

aim of the study to not receive the most 

optimized or generalized classification results 

but to have the decomposition of frequency-

bands (LL vs. HH) on the separability of classes 

and to examine how patterns of similarity 

connect to the results of classification. The fixed 

train-test split enabled us to have a controlled 

and constant evaluation factor that would ensure 

that the performance differences realized 

between LL and HH sub-bands could be directly 

attributed to the intrinsic discriminatory nature 

of the bands and not due to resampling 

manipulation. 

This sub-section will provide the performance of 

classification attained with the Random Forest 

classifier against the two sub-bands, namely, the 

LL and HH. These findings allow a practical 

comparison of the functionality of low- and 

high-frequency representations, showing how 

each frequency band has contributed to the class 

separability and overall classification 

effectiveness. 

The randomization of the RF model using the 

LL (Low-Low) subband summarizes the 

classification performance of the RF model as 

shown in table 4. According to the macro and 

weighted F1-scores, the total accuracy was 43%. 
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Table 4: Presents the classification report for the LL sub-band, encompassing precision, recall, F1-score, and total 
accuracy across all classes 

Class Precision Recall F1-score Support 
Barretts esophagus 0.06 0.05 0.06 19 
Dyed-lifted-polyps 0.00 0.00 0.00 28 
Ileocecal valve 0.21 0.10 0.14 40 
Normal mucosa and vascular pattern in the large bowel 0.45 0.72 0.55 293 
Cecum 0.00 0.00 0.00 23 
Accessory tools 0.58 0.60 0.59 253 
Duodenal bulb 0.23 0.27 0.25 41 
Small bowel_terminal ileum 0.43 0.56 0.49 169 
Resected polyps 0.00 0.00 0.00 19 
Gastric polyps 0.14 0.08 0.10 13 
Esophagitis 0.07 0.05 0.06 21 
Retroflex rectum 0.50 0.08 0.13 13 
Normal esophagus 0.56 0.32 0.41 28 
Normal stomach 0.52 0.59 0.55 194 
Dyed-resection-margins 0.21 0.12 0.15 49 
Mucosal inflammation large bowel 0.00 0.00 0.00 6 
Resection margins 0.00 0.00 0.00 5 
Blood in lumen 0.25 0.03 0.05 34 
Colorectal cancer 0.00 0.00 0.00 28 
Gastroesophageal_junction_normal z-line 0.36 0.33 0.35 66 
Pylorus 0.30 0.20 0.24 79 
Colon polyps 0.32 0.23 0.27 164 
Colon diverticula 0.00 0.00 0.00 6 
Accuracy 

  
0.43 1591 

Macro avg 0.23 0.19 0.19 1591 
Weighted avg 0.39 0.43 0.39 1591 

Higher recall values were noted for broad 

structural classifications such as Normal mucosa 

and Normal stomach, however texture-rich or 

pathologically analogous categories like 

Barrett’s esophagus and Colorectal cancer had 

diminished scores. The results demonstrate that 

the LL sub-band proficiently catches coarse 

structural patterns and lighting signals, although 

it fails to include the finer textural 

characteristics necessary for distinguishing 

visually comparable disease situations. 

The classification results of the Random Forest 

(RF) model for the HH (High–High) sub-band 

are presented in Table 5. The model attained an 

overall accuracy of 32%, with macro and 

weighted F1-scores of 0.12 and 0.29, 

respectively. 

 

Table 5: displays the relevant data for the HH sub-band under identical testing conditions 

Class Name Precision Recall F1-score Support 
Barrett’s esophagus 0.00 0.00 0.00 19 
Dyed-lifted-polyps 0.00 0.00 0.00 28 
Ileocecal valve 0.00 0.00 0.00 40 
Normal mucosa and vascular pattern in the large bowel 0.37 0.53 0.44 293 
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Cecum 0.00 0.00 0.00 23 
Accessory tools 0.41 0.43 0.42 253 
Duodenal bulb 0.00 0.00 0.00 41 
Small bowel_terminal ileum 0.27 0.31 0.29 169 
Resected polyps 0.00 0.00 0.00 18 
Gastric polyps 0.00 0.00 0.00 13 
Esophagitis 0.08 0.05 0.06 22 
Retroflex rectum 0.00 0.00 0.00 13 
Normal esophagus 0.25 0.29 0.27 28 
Normal stomach 0.39 0.49 0.44 194 
Dyed-resection-margins 0.14 0.04 0.06 49 
Mucosal inflammation large bowel 0.00 0.00 0.00 6 
Resection margins 0.00 0.00 0.00 5 
Blood in lumen 0.00 0.00 0.00 34 
Colorectal cancer 0.20 0.04 0.06 28 
Gastroesophageal junction_normal z-line 0.23 0.21 0.22 66 
Pylorus 0.25 0.27 0.26 79 
Colon polyps 0.20 0.30 0.24 164 
Colon diverticula 0.00 0.00 0.00 6 
Accuracy 

  
0.32 1591 

Macro avg 0.12 0.13 0.12 1591 
Weighted avg 0.27 0.32 0.29 1591 

While certain structural classifications, 

including normal mucosa and vascular patterns 

in the large bowel, normal stomach, and 

accessory tools, had relatively superior memory, 

the majority of fine-textured or low-contrast 

categories produced poor or negligible 

recollection. 

This result indicates that the HH sub-band 

preserves high-frequency texture details but is 

more susceptible to noise and fluctuations in 

illumination, resulting in unstable class 

separability and less overall discriminative 

power. 

The classification results in Tables (4) and (5) 

demonstrate that the LL sub-band regularly 

surpasses the HH sub-band, especially for the 

predominant classes of Normal mucosa and 

vascular pattern in the large bowel, Normal 

stomach, and accessory tools. This supports the 

use of LL characteristics as the main input for 

classification and is consistent with the 

suggested similarity-based analysis, which 

found decreased inter-class similarity in the LL 

band for these classes, as seen in Table (6). 

Consequently, the three classes were able to 

perform better in terms of classification 

accuracy, partially due to the larger sample size. 

As it can be seen in Figure 1, the dataset is 

highly skewed, which is usually a challenge to 

classifiers. However, even though one can 

observe a large intra-class variability in these 

classes (Table (2)), the large size of the sample 

relieved the imbalance effect, resulting in the 

model achieving a relatively stable higher 

performance. 
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Table 6: . Inter-class similarity metrics (SSIM and MSE) for the three principal categories: Normal mucosa 
and vascular pattern in the large bowel, Normal stomach, and Accessory tools compared to all other classes 

Reference Class Compared Class SSIM_LL SSIM_HH MSE_LL MSE_ HH 
Normal mucosa and vascular pattern in the 
large bowel 

Barretts esophagus 0.1555 0.2915 0.0969 0.0113 

Normal mucosa and vascular pattern in the 
large bowel 

Pylorus 0.1773 0.2920 0.0871 0.0101 

Normal mucosa and vascular pattern in the 
large bowel 

Dyed-resection-
margins 

0.1972 0.2879 0.0675 0.0106 

Normal mucosa and vascular pattern in the 
large bowel 

Resected polyps 0.1926 0.2776 0.0683 0.0095 

Normal mucosa and vascular pattern in the 
large bowel 

Colorectal cancer 0.1727 0.2662 0.0725 0.0105 

Normal mucosa and vascular pattern in the 
large bowel 

Colon polyps 0.1779 0.2870 0.0782 0.0123 

Normal mucosa and vascular pattern in the 
large bowel 

Colon diverticula 0.1692 0.2847 0.0712 0.0100 

Normal mucosa and vascular pattern in the 
large bowel 

Dyed-lifted-polyps 0.1995 0.2874 0.0657 0.0092 

Normal mucosa and vascular pattern in the 
large bowel 

Ileocecal valve 0.1870 0.2522 0.0726 0.0107 

Normal mucosa and vascular pattern in the 
large bowel 

Blood in lumen 0.1667 0.2865 0.0848 0.0097 

Normal mucosa and vascular pattern in the 
large bowel 

Normal esophagus 0.1514 0.3245 0.0992 0.0098 

Normal mucosa and vascular pattern in the 
large bowel 

Retroflex rectum 0.1927 0.3138 0.0720 0.0110 

Normal mucosa and vascular pattern in the 
large bowel 

Gastroesophageal_jun
ction_normal z-line 

0.1524 0.3060 0.1003 0.0109 

Normal mucosa and vascular pattern in the 
large bowel 

Accessory tools 0.1860 0.2748 0.0772 0.0089 

Normal mucosa and vascular pattern in the 
large bowel 

Small bowel_terminal 
ileum 

0.1790 0.2453 0.0779 0.0118 

Normal mucosa and vascular pattern in the 
large bowel 

Mucosal inflammation 
large bowel 

0.1764 0.2700 0.0774 0.0109 

Normal mucosa and vascular pattern in the 
large bowel 

Resection margins 0.2033 0.3120 0.0706 0.0086 

Normal mucosa and vascular pattern in the 
large bowel 

Normal stomach 0.1520 0.2700 0.0859 0.0162 

Normal mucosa and vascular pattern in the 
large bowel 

Esophagitis 0.1523 0.3212 0.0982 0.0124 

Normal mucosa and vascular pattern in the 
large bowel 

Cecum 0.2143 0.2677 0.0610 0.0115 

Normal mucosa and vascular pattern in the 
large bowel 

Gastric polyps 0.1481 0.2780 0.0932 0.0116 

Normal mucosa and vascular pattern in the 
large bowel 

Duodenal bulb 0.1763 0.2514 0.0926 0.0097 

It was found that the use of LL features 

enhances discriminative power and provides a 

more reliable input space on which further 

classification should be performed, and accuracy 

and F1-scores are improved by approximately 

10 percent, in comparison to the HH subband. 

Random Forest tests showed poor classification 

of several classifications ( Colon diverticula, 

Colorectal cancer, Mucosal inflammation of the 

large bowel, Resected polyps, Cecum, Dyed-

lifted polyps, and Resection margins) (Table 

(4)). The results from Table (2) and Figure (1) 
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confirm that two compounding challenges 

define these categories: 

• Elevated intra-class variability, indicated 

by increased SSIM and MSE values in the 

LL and HH sub-bands, demonstrates 

considerable variance across images within 

the same class. 

• Insufficient sample size, specifically as 

they constitute minor classes within the 

dataset, which intensifies the effects of 

imbalance on model training and diminishes 

the classifier's capacity to acquire 

differentiating characteristics. 

All these factors explain the poor performance 

of these small classes in classification even 

though feature extraction based on similarity is 

more effective in other larger classes. This 

brings out the importance of addressing class 

imbalance and within-class variability in 

medical imaging databases and particularly in 

gastrointestinal endoscopic pictures. 

The intra-class variation of the Colon polyps as 

in Table 2 is clear in this case, although it is also 

a major class not affected by the sample 

imbalance that affected the smaller classes. The 

similarity to other classes is relatively low, 

which means that inter-class differences are 

maintained sufficiently. However, there was a 

low classification accuracy because there was a 

great disparity within the class alone. 

On the other extreme, the six minor categories, 

such as, Colon diverticula, Colorectal cancer, 

Mucosal inflammation of the large intestine, 

Resected polyps, Cecum, and Dyed-lifted 

polyps, achieved a classification accuracy of 

zero, primarily because they showed a lot of 

intra-class variability and had a small sample 

size. Although this variability difficulty is linked 

to the colon polyps, the larger sample size 

facilitated the model to overcome this limitation 

to some extent resulting in high performance 

relative to the smaller classes. 

4. Conclusion and Future work 

The paper presents an elaborate discussion on 

gastrointestinal (GI) endoscopic image 

classification with a particular focus on the 

relationship between frequency-dependent 

characteristics, intra-class variation, inter-class 

similarity, and sample size. It can be seen that 

low-frequency structural cues provide more 

discriminative power by comparing the 

proposed frequency-band-based framework that 

uses Discrete Wavelet Transform (DWT) to 

differentiate between LL (low-frequency) and 

HH (high-frequency) sub-bands. At the same 

time, high-frequency details, still containing 

textures and edges, have the effect of raising the 

similarity between classes and are not as 

effective at distinguishing between classes.Its 

most significant conclusion is that intra-class 

heterogeneity can have a significant effect on 
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classification difficulty. Although there is 

physical separation between classes (low inter-

class SSIM), the internal diversity, especially of 

minority classes (colon diverticula, colorectal 

cancer, and dyed-lifted polyps), has a 0% 

classification accuracy. Conversely, most of the 

classes, including colon polyps, had a good f1-

score (approximately 27%), regardless of the 

heterogeneity and it is therefore clear that 

sample size reduces the negative impact of 

heterogeneity partially. The study also 

demonstrates that frequency-sensitive selection 

of features enhances interpretability and efficacy 

of the classifier. The focus on LL sub-bands is 

associated with a better classification 

performance, which suggests that automated 

gastrointestinal image analysis should be 

focused on global structured information as 

opposed to detailed textures, particularly when 

there is high intra-class heterogeneity. Such 

results indicate that augmenting the performance 

of classification will require more than just 

increasing the size of the sample. Intra-class 

variability is an important aspect that should be 

dealt with by means of pre-processing methods, 

such as normalization of illumination, picture 

alignment, and focused augmentation, in 

general, focusing on minority classes. Moreover, 

frequency-domain analysis offers quantitative 

method of feature selection that reduces 

dimensions and helps to improve computing 

efficiency with no significant loss of 

discriminative power.To sum up, it is stressed in 

the study that a delicate balance between inter-

class differentiation, intra-class variability, and 

sample distribution is the key to the successful 

classification of GI images. These lessons will 

provide fundamental guidance to the creation of 

sustainable, interpretable, and effective 

automated medical imaging. 

This research forms the basis of building the 

custom classification models of the hardest 

classes that are detected by the intra and inter 

class similarity analysis. Using the low-

frequency features based on the wavelets, future 

studies are aimed to provide increased accuracy 

and strength of such complicated classes and 

enable more effective automated processing of 

the gastrointestinal images. 

An extension of the present work to include 

cross-validation and optimization of 

hyperparameters could be applied to a specific 

classification model once a dedicated 

classification model is created relying on the 

results of this exploratory analysis. Although the 

Haar wavelet was used in the present research 

because of its simplicity and success in 

decomposing the low and high-frequency 

components, research can be done in the future 

using the more advanced wavelet families, 

including Daubechies and Symlets. 

Incorporating these wavelets may possibly 

provide better representation of features, intra-
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class discrimination and increase classification 

accuracy, especially on difficult classes found in 

this work. 

References 

[1] Sivari, E., Bostanci, E., Guzel, M. S., 

Acici, K., Asuroglu, T., and Ercelebi 

Ayyildiz, T., 2023, A New Approach for 

Gastrointestinal Tract Findings Detection 

and Classification: Deep Learning-Based 

Hybrid Stacking Ensemble Models, 

Diagnostics, 13, doi: 

10.3390/diagnostics13040720. 

[2] Aljanabi, M. A., Hussain, Z. M., and Lu, 

S. F., An Entropy-Histogram Approach 

for Image Similarity and Face 

Recognition, Mathematical Problems in 

Engineering, vol. 2018, 2018, doi: 

10.1155/2018/9801308. 

[3] Wang, Z., Bovik, A. C., Sheikh, H. R., and 

Simoncelli, E. P., 2004, Image quality 

assessment: From error visibility to 

structural similarity, IEEE Transactions 

on Image Processing, 13, 1–14, doi: 

10.1109/TIP.2003.819861. 

[4] Zhang, L., Zhang, L., Mou, X., and Zhang, 

D., 2011, FSIM: A feature similarity index 

for image quality assessment,” IEEE 

Transactions on Image Processing, 20, 

2378–2386, doi: 

10.1109/TIP.2011.2109730. 

[5] Liu, X., Song, L., Liu, S., and Zhang, Y., 

2021, A review of deep-learning-based 

medical image segmentation methods,” 

Sustainability (Switzerland), 13, 1–29, doi: 

10.3390/su13031224. 

[6] Wang, Z.,. Hu, M, Zeng, M., and Wang, 

G., 2022, Intelligent Image Diagnosis of 

Pneumoconiosis Based on Wavelet 

Transform-Derived Texture Features,” 

Computational and Mathematical 

Methods in Medicine, 2022, doi: 

10.1155/2022/2037019. 

[7] Kiran, S. K. S., and Areeckal, A. S., 2025, 

Classification of Osteoporotic X-ray 

Images using Wavelet Texture Analysis 

and Machine Learning, International 

Journal of Computing and Digital 

Systems, 17, 1–14, doi: 

10.12785/ijcds/1570996365. 

[8] Al Shafi, A., Ahmed, M., Rahman, M. S., 

Hossain, M. S., and Uddin, M. F., 

2024,Deep Learning for Imbalanced 

Gastrointestinal Image Classification: A 

Comparative Study of Architectural 

Choices, 741–746, doi: 

10.1145/3723178.3723276. 

[9] Jha, D.et al., 2024, GastroVision: A Multi-

class Endoscopy Image Dataset 

for Computer Aided Gastrointestinal 

Disease Detection, Lecture Notes in 



MJPS,   VOL. (12),   NO. (2),   2025 

 
 

187 

Computer Science (including subseries 

Lecture Notes in Artificial Intelligence and 

Lecture Notes in Bioinformatics), 14315, 

125–140, doi: 10.1007/978-3-031-47679-

2_10. 

[10] Latif, I. H., Abdulredha, S. H., and 

Hassan, S. K. A., 2024, Discrete Wavelet 

Transform-Based Image Processing: A 

Review, Al-Nahrain Journal of Science, 

27, 109–125, doi: 

10.22401/ANJS.27.3.13. 

[11] Kingsbury, N., and Magarey, J., Wavelet 

Transforms in Image Processing, 27–46, 

1998, doi: 10.1007/978-1-4612-1768-8_2. 

[12] Güven, S. A., Şahin, E., and Talu, M. F., 

2024, Image-to-Image Translation with 

CNN Based Perceptual Similarity Metrics, 

Journal of Computer Science, 9, 84–98,  

[13] M. Arabboev, S. Begmatov, M. 

Rikhsivoev, K. Nosirov, and S. 

Saydiakbarov, 2024, A comprehensive 

review of image super-resolution metrics: 

classical and AI-based approaches, Acta 

IMEKO, 13, 1–8, doi: 

10.21014/ACTAIMEKO.V13I1.1679. 

[14] Raigonda, M. R., and Shweta, 2024, 

Signature Verification System Using 

SSIM In Image Processing,” Journal of 

Scientific Research and Technology, 2, 5–

11, doi: 10.61808/jsrt79. 

[15] Cambay, V. Y., et al., 2024, Automated 

Detection of Gastrointestinal Diseases 

Using Resnet50*-Based Explainable Deep 

Feature Engineering Model with 

Endoscopy Images, Sensors, 24, 23. doi: 

10.3390/s24237710. 

  

 

 

 


