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Abstract: Gastrointestinal (GI) endoscopic examinations can detect various GI issues early. Challenges like high intra-class
variability, moderate differences between classes, and biased data complicate automated classification. The study analyzes
frequency-dependent image features in classification results, focusing on similarities within and between classes to better
understand the dataset and identify the most difficult classes to classify. It uses a similar approach for similarity analysis
with Discrete Wavelet Transform (DWT), breaking images into low-frequency (LL) and high-frequency (HH) sub-bands
based on frequency ranges. Structural Similarity Index Measure (SSIM) and Mean Squared Error (MSE) inter- and intra-
class similarities. Functional validation involved a classification test using the Random Forest (RF) model. Experiments on
multiple GI endoscopic datasets illustrate that LL sub-bands, capturing coarse structural features, provide higher
discriminative power and improve classification accuracy, while HH sub-bands, preserving fine textures, are less effective
due to higher inter-class similarity. Analysis of similarity measures highlights classes with high intra-class variability,
particularly minority classes, as the most challenging for classification. The frequency-aware similarity approach enhances

interpretability, reveals dataset-specific issues, and automates the evaluation of gastrointestinal images.

Keywords: Gastrointestinal Endoscopic Image, Intra-Class Similarities, Discrete Wavelet Transform.

particularly endoscopy, analysis of image
1. Introduction

similarity is essential in order to improve

Similarity measure compares the distance (by a diagnostic and classification of medical imaging
selected norm) between the data points in order [1]. Understanding the image resemblance or
to estimate the level of similarity between two variance of patterns among classes of diseases
images. Similarity is the extent of resemblance could provide information on the fairness of
of two images. A powerful similarity measure is image qualities and inherent complexity of the
greatly reliant on the choice of the distance or classification task. Consequently, scholars have
comparison function. In medical imaging paid more and more attention to the

© Oleiwi, et al., 2025. This is an open-access article development of similarity measures determining
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the wvisual attributes that have the most

significant effect on automated decisions [2].

The research problem is clarified in persistent
scanty research has been done on the inter-class
similarity of large-scale gastrointestinal (GI)
endoscopic image data. Automatic classification
is a problem due to the similar visual features of
disease  groups  with  slight  variation.
Conventional measures of similarity are based
on structural or perceptual consistency. But
These measures tend to overlook frequency
based variations which are important in

differentiating visually similar classes.

The contributions of this proposed study will
solve these issues by proposing a wavelet-based
frequency decomposition of GI images into low-
frequency (LL) and high-frequency (HH) sub-
bands. The inter-class similarity is quantified in
both LL and HH band to determine where
similarities exist, in general content or structural
intricacies, and how well the classification is
complex by identifying which frequency bands
have the strongest discriminative features. This
framework that utilizes frequency-sensitive
information classifies classes with inherently
greater intra-class variability or subtle inter-class
differences, costs less to compute and has less
data  dimensionality, and improves the
performance, efficiency, and interpretability of

classifiers in automated GI image classification.

1. Related Works

Wang et al. [3]. created SSIM in 2004, and the
approach symbolizes a drastic departure of
error-based

traditional approaches to

perceptually pertinent, structure-based
evaluation. The SSIM is used to measure the
brightness, contrast and structural coherence of
the images and there is a great relationship with
human perception. In spite of its massive
success in determining image quality, SSIM is
heavily space-based and does not adequately
represent finer frequency-based variations that
prove vital in medical-imaging, wherein high-
frequency features often hold vital clinical

details.

The FSIM that was presented by Zhang et al.
(2011) [4] combined low-level data, such as
phase congruence and the magnitude of
gradient, to enhance the discriminative analysis.
FSIM demonstrated strong results on most
benchmark data. But in the case of SSIM, FSIM
works mainly in the spatial field. Other
approaches are edge detection within similarity
assessment, such as the Feature-Based Structural
Measure (FSM) by Shnain, Hussain and Lu
(2017) [2], which enhances facial picture
recognition. Although FSM is effective, it also
focuses on conspicuous edges and spatial
characteristics without being able to analyze
frequency bands individually, and therefore its
direct use to inter-class classification in medical

imaging, where high-frequency variations are
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often critical. Ineffectively resolves frequencies,
which may ignore small but significant
differences in high frequency textures or

complicated structures.

These findings are supported by recent
assessments of medical image analysis. Liu et al.
(2021) [5] identified the following gaps to deep
learning-based medical segmentation, such as
the lack of frequency-domain information
utilization, inter-class similarity, and intra-class
variability. By illustrating that a wavelet-based
feature can increase the accuracy of diagnosis of
pneumoconiosis images based on their
frequency-domain analysis [6], Wang (2022)
identified the importance of frequency-domain
analysis. Although the authors of the article
focused their research on selecting the
methodologies that suit certain datasets, Sai
Kiran and Areeckal (2025) [7] showed that
texture enhances

wavelet-based analysis

classification in osteoporotic X-ray
images.Taken together, these studies indicate a
specific trend: feature-based, as well as spatial-
domain similarity measures are suitable in
perceptual assessment. They may not be capable
of the fine, frequency-specific variations
required to conduct an accurate medical
classification. Following this revelation, the
present paper proposes a frequency-band-based
similarity wavelet

analysis  through a

decomposition.

2. Proposed Methodology Framework

In this section, the proposed framework that is
expected to evaluate the inter-class similarity
and complexity of gastrointestinal endoscopic
images is described. The main objective is to
find out which of the frequency bands (low or
high) offers the most distinguishing
characteristics to use in classification tasks. The
method combines frequency decomposition
using wavelets, statistical similarity
measurement to select the best frequency bands

to classify.
3.1 Dataset Description

Figure (1) displays a sample analysis of a
contemporary  gastrointestinal endoscopic
dataset of multiple disease types performed
as a suggested analysis. There are numerous
photos of different clinical situations in each
of the classes. The available set of
gastrointestinal (GI) endoscopic imaging has
been used in this work that combines a wide
range of diseased and normal conditions
around the digestive tract. It is a set of 8,000
high-resolution endoscopic images of the
upper and lower gastrointestinal tract
including the esophagus, stomach and colon.
includes 27

The assortment distinct

categories ~each  with a  specific
gastrointestinal disease or condition. These
classes comprise a broad range of anatomical

points, clinical, and clinical anomalies,
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normal mucosal appearances, and instances

of polyp excision, hence provide a

comprehensive presentation of the real

endoscopic variations [8].

1600 1467

Count

Distribution of images per class label

Label

Fig. (2): Dataset distribution over 27 classes.

The images were captured through various
endoscopic systems in varying lighting and
viewing conditions. So, variability in imaging is
usually common in clinical practice. Such
variability will ensure that the dataset will
include both diseased properties and natural
intra-class variation and inter-class similarity

within real-world medical images.

The collection contain an equal number of

diseased cases and normal cases. This
distribution is a good standard of classification
algorithms, similarity measures, and frequency-
based analytical processes. The diverse visual

characteristics of the classes make it particularly

suitable when analyzing image similarity,
discriminability, and classification difficulty and

these are the main goals of the given research

[9].
Wavelet Decomposition

Wavelet transform is a method of multi-
resolution analysis which represents an image at
the same time in both spatial and frequency
domain. This representation allowing a detailed
consideration of the textures, edges and changes
in illumination. Unlike in Fourier Transform,
which can only provide global frequencies of an
image, the Discrete Wavelet Transform (DWT)

divides an image into hierarchical sub-bands and
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retains both spatial localization and frequency

content[10].

The separable low-pass and high-pass filters
used on rows and columns of an image in using
the two-dimensional discrete wavelet transform
(DWT2) are sequential. The process produces
four groups of coefficients at each
decomposition stage, one low-pass group,
known as the Approximation Coefficients (A or
LL) and three high-pass groups, known as the
Detail Coefficients (LH, HL, HH), which are the
vertical, horizontal and diagonal orientations,
respectively. The LL band (Low-Low)
maintains the coarse structure of an image and
the overall illumination whereas the HH band
(High-High) captures fine details such as edges,
fine textures, and local contrast variations.
Vertical and horizontal details information is
included in the LH and HL subbands. The
down-sampling procedure of the DWT ensures
that after each filtering the number of
coefficients is halved in each dimension. This
reduces redundancy of data and enhances a
hierarchical arrangement where the lower levels

contain generalized attributes whereas the high

levels preserve specifics [11].

This decomposition can be iterated across

numerous layers (L levels) to achieve
progressively abstract representations of the
visual structure. All images in this study were

broken down using the DWT to produce multi-

resolution representations. We examined two

main subbands:-

-LL  (Low—Low): encompasses the low-
frequency elements, representing the entire

configuration and illumination.

-HH (High—High): encompasses high-frequency
components associated with edges, textures, and

intricate features.

This decomposition provides insights into
frequency-level changes in structural similarity
and visual complexity by independently
analyzing similarity patterns between the
detailed (HH) and coarse (LL) information

domains.
3.2 Similarity Measurement

The similarity of the image pairings among
different classes was measured on the basis of
two complementary and known values: Mean
Squared Error (MSE), which is the measure of
pixel-level distance, and Structural Similarity
Index (SSIM), which is the measure of
perceptual distance [2].

The Mean Squared Error for two image sub-
band arrays X and Y of size N is defined as
[12]: -

MSEXY)=~3L,(X; - ¥?)? (1)

The MSE offers a straightforward and

comprehensible metric for the average

difference between matching pixel values; lower
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MSE values signify greater similarity across
images. To find the MSE on the wavelet sub-
bands, each sub-band is first min-max scaled to
a uniform range (e.g., [0,1]). This ensures that
MSE values can be compared across different
pictures and sub-band types. The normalization

was executed via Eq. (2) [13].

x—min (x)

Xnorm = max(x)—min (x) (2)

The Structural Similarity Index (SSIM) is
defined in Eq. (3) as : -

SSIM(X,Y)= (2uxpy+C1)(2oxy+Cz)

(ﬂ)z(+,u}2,+61)(a)2(+ a§+C2)

3)
The constants C;and C, are defined as follows:
€, = (KlL)Za C; = (KZL)Z

K;and K, are significant constants, while
L equals 255, the maximum pixel value

[14].

SSIM can be calculated on a local level with the

help of a Gaussian-weighted sliding window,

which is averaged across the whole image to
obtain a single global similarity index.
Similarly, the normalized map of coefficients of
the wavelet sub-bands (LL and HH) is processed
using a windowed operation, and data-range is
1.0 to produce similar and comparable values of

SSIM across various frequency bands.

3.3 Proposed Similarity and

Complexity Assessment Technique

To increase the capacity to discriminate and
inter-class separability between gastrointestinal
tract images, a composite similarity-complexity
analysis methodology was created that improved
the capacity to discriminate and interclass
differentiation. Besides applying the wavelet-
based subband decomposition and pair-wiser
similarity analysis method. A methodological
workflow diagram was demonstrated the broad

sequence of suggested methods as in Figure (2).

171



MJPS, VOL.(12), NO.(2), 2025

Compute
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Fig. (3): Proposed Frequency-Based Similarity and Classification Framework Workflow

Stepl. Image preprocessing: During this step, a
conversion into grayscale followed by resizing
all the images to 128X128 pixels was done so
that the spatial resolution of each image in the
collection remained similar. This is done by a
normalizing process so that the samples all have
the same dimensionality, making sub-band
coefficients comparisons easier. Also, the
scaling maintains valuable structural data that is
essential in disease classification and reducing

computational expenses.

Step2. Pairwise  Similarity = Computation:
Similarity score was calculated in pair-wise
variables according to the Discrete Wavelet
Transform (DWT) of each image pair of
different classes, according to the low-frequency
(LL) and the high-frequency (HH) sub-bands.
Each of the preprocessed images was
decomposed using Haar mother wavelets, i.e.

Discrete Wavelet Transforms (DWTs). The Haar

wavelet ~was  chosen  because it s
computationally simple, orthogonal and highly
separates low frequency structural information
and high frequency detail. Haar gives a localized
and sharp basis, so it is especially useful on
medical images like gastrointestinal endoscopy,
where sudden changes in intensity are
significant anatomical boundaries. Also, the use
of rectangular step-shaped basis functions in
Haar enables it to be easily decomposed at very
low cost, a feature necessary when computing
large volumes of images, using extensive
comparisons of pairwise similarities. A non-
redundant representation has the advantage of
leaving in LL sub-bands only those global
structural components necessary to evaluate
inter-class separability, and in HH sub-bands,
only fine detail that can be used to measure
intra-class variability. Since the main task of the
to determine the

study was strength  of
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discriminatory stimuli over frequency bands and
the extent of inter/intra-class similarity, Haar
was the best fit with the aim of carrying out this
exploratory study as it provided an ideal ratio of

interpretability, efficiency, and robustness.

Two related similarity indices were applied,
Mean Squared Error (MSE), used to measure
pixel-wise differences between sub-bands and
Structural Similarity Index (SSIM) used to
measure perceptual similarity using brightness,
contrast and structure. Each of the sub-bands
was then normalised using the min-max scaling
to the range of [0,1], thus ensuring that the
bands and classes are comparable. Solved the
zero-variance case by replacing a zero matrix
with a zero array to prevent similarity

calculation instability.

Step3. Aggregation of Similarity Results: All
image permutations in the LL band and HH
band were determined and the SSIM and MSE
calculated separately per class pair. Aggregated
scores are statistically the average similarity of
perception and structural difference in classes.
The data were summarized and presented in a
way that indicates how inter-class similarity is

different in low and high frequency domains.

Step4. Frequency Band Selection: Comparative
SSIM  values between the HH and LL
components were used to determine the
appropriate sub-band in which the image should

be classified as demonstrated by the similarity

analysis in frequency bands. A less similar
demonstration of the LL band than the HH band
indicates that more features of low frequencies
(global

differentiated between classes; the LL sub-band

forms and smooth patches) are
is therefore selected as the input to the classifier.
On the other hand, in the case where the HH
band shows reduced similarity, high-frequency
textures and edges have stronger discriminative
signals, which causes the choice of HH sub-
band. In similar case when the similarity within
a band is approximately moderate (e.g. close to
0.5) it often indicates confusing structural
classes and  makes

overlap  between

discrimination difficult.

In particular, in the case when a substantial
resemblance is observed in the LL band, the
process of classification becomes more difficult
as a strong resemblance in low-frequency
structures  would  signal similar  global
morphology among the classes leading to
reduced separability. On the other hand, high
similarity in the HH band is not important, since
this is commonly an indication of superficial
textures and not fundamental similarities in

structure.

Frequency bands with lower similarity are
usually preferred, as this would capture more
unique and discriminative information, and,
and better

thus, better class separation

classification.
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3.4 Evaluation Strategy

To wverify the proposed similarity-based
complexity analysis, the results were compared
with traditional similarity methods (SSIM-only
and MSE-only). The assessment was developed

to: -

e Determine which bands (low or high
frequency)  exhibit  the  greatest
discriminative potential.

e Examine how classification difficulty
and inter-class similarity relate to one
another.

The evaluation and comparison were
subsequently structured into two complementary

scenarios: -

e Intra-class similarity assessment: The
initial scenario assesses the proposed
technique by quantifying intra-class
similarity, namely the degree of

similarity across pictures within the same

internal  class

class, to examine

consistency and variability.

This elucidates the internal composition of each
category and its impact on categorization

complexity.

o Classification performance-based
functional similarity validation: The third
scenario  involves carrying out a
controlled classification using multiple
classifiers on different representations of

data.

The raw images are first classified and then the
individual classification of the LL and HH sub-
bands are carried out. Results obtained in the
form of accuracies and patterns of confusion are
analyzed to determine the most common
misclassifications and their association with
complexity results according to similarity.
Specific focus was given to the imbalance in the
classes and limited access to the data in certain
GastroVision categories. As a result, the
frequency bands (LL and HH) were evaluated
separately to determine whether one of the
bands gives more categorization results. The
obtained results were then contrasted with the
suggested band-selection method to determine
whether the frequency band determined as more
discriminative through the similarity analysis
truly produced better classification. It is a multi-
stage test, a functional contrast, which explicitly
connects similarity-based complex analysis with
quantitative categorization outcomes, which
justifies not only the interpretability but also the

practical importance of the suggested method.
3. Results and Discussion

This section breaks down and examines the
experimental data derived from the suggested
similarity-based complexity evaluation and its
validation via classification performance. The

analysis intends to: -
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e Measure the variation of similarity
between frequency sub-bands (LL and
HH).

Analyze the correlation between these

similarity patterns and class separability

as well as the challenges of
classification.
4.1 Intra-class and Inter-class Similarity

Patterns

In this sub-section, this method given the
average and distributional similarity measures
(MSE and SSIM) of the LL and HH sub-bands
across all 253 combinations of class pairs which
are formed out of the 23 used classes. Though
the initial dataset has 27 classes, four of them
were not subjected to analysis because of their
inadequate sample sizes. Such classes were

under-represented which would have resulted in

unreliable calculation of frequency-based
similarity measures and would have produced
unreliable or biased statistics. Thus, it analyzed
the rest 23 classes, which give sufficient
representation in calculating the similarity of LL
and HH among all the 253 combinations of
classes. The results showed the differences in
internal homogeneity (intra-class) and the
mutual separability (inter-class) among classes,
and the frequency bands that provide more
effective discriminative indicators. The average
values of SSIM within the LL sub-band of each
class pair combination are presented in Figure
(3). The reduction in the values of SSIM means
that there is less structural similarity among
to an increased

classes, which points

discriminative capacity in the low-frequency

domain.
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Fig. (4): Mean Structural Similarity (SSIM) over the LL sub-band for all class pair combinations
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Figure (4) depicts the average SSIM values
calculated for the HH sub-band across all 253
class pair combinations. The results elucidate

the  high-frequency  similarity  behavior,

emphasizing discrepancies in textural and edge-
based discriminative information across various

gastrointestinal states.
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Fig. ( 5): Mean Structural Similarity (SSIM) over the HH sub-band for all class pair combinations

Figure (5) summarizes the average inter-class
Mean Squared Error (MSE) values for the LL
(low-frequency) and HH (high-frequency) sub-
bands over all 253 class pair combinations.
Reduced MSE values signify more pixel-level

similarity between class pairings. The HH sub-

band typically has elevated MSE values,
indicating heightened sensitivity to subtle
textural differences, while the LL band
encompasses more  extensive  structural

similarities.
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Fig. 6: Comparison of mean inter-class MSE values between LL and HH sub-bands.
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The results suggest that similarity values of the
low-frequency (LL) bands are worse than that of
the high-frequency (HH) bands, whereas the
values of the Mean Squared Error (MSE) are
very high in the LL bands.

This can be interpreted to mean that HH bands
are more similar across classes, and the LL

bands have greater inter-class diversity.

The similarity is also present, which suggests

classification problems of some pairs of classes,

but, overall, the similarity values are lower in
the LL bands, which makes them more useful to
classification, as they have more efficient
discriminative representation to all combinations

of classes.

Table (1) demonstrates the statistical qualities of
the processed similarity measures (SSIM and
MSE) of all 253 combinations of classes-pair
involving the two sub-bands (LL and HH).

Table 1: Illustrates the statistical attributes of the calculated similarity measures (SSIM and MSE) across all
253 class-pair combinations for both LL and HH sub-bands

Statistic Average SSIM  Average SSIM  Average MSE Average MSE
(LL Sub-band) (HH Sub-band) (LL Sub-band) (HH Sub-band)
Minimum 0.1209 0.2310 0.0591 0.0076
value
Maximum 0.3216 0.4736 0.1193 0.0203
value
Mean value 0.1757 0.3082 0.0872 0.0113

They indicate that the values of the SSIM are
always lower in the LL bands (mean= 0.1757)
than in the HH bands (mean = 0.3082), and that
there are few similarities and high
discriminative  capacity within the low-
frequency domain. In the meantime, the MSE
values are greater in the LL bands (mean =
0.0872), which suggests that more classes of
variance would be found in the LL subbands.
On the other hand, the HH bands are more
similar (SSIM) and less reconstruction error
(MSE) which is an indication that high-
frequency bands retain more shared structures

and textures across classes. Such findings

confirm the earlier finding that LL sub-bands

are more effective in classification since they
exhibit less inter-class similarities and more

variabilities hence more category separability.

The intra-class similarity statistics of the entire
23 categories in the sample are shown in Table
2. The results show that SSIM values are higher
in the HH sub-bands than in the LL sub-bands in
most of the intra-class couples indicating that
high-frequency components maintain more
similarity among the structures in the same
class. Conversely, the MSE values are high in
the LL sub-bands, which implies that the low-
frequency components have a higher degree of

variability and less similarity.
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Table 2: Similarity metrics (SSIM and MSE) for intra-class couples within LL and HH sub-bands

Pair

SSIM_ L. SSIM HH MSE LLL. MSE HH

Barretts esophagus vs Barretts esophagus
Dyed-lifted-polyps vs Dyed-lifted-polyps

Ileocecal valve vs Ileocecal valve

Normal mucosa and vascular pattern in the large
bowel vs Normal mucosa and vascular pattern in the
large bowel

Cecum vs Cecum

Accessory tools vs Accessory tools

Duodenal bulb vs Duodenal bulb

Small bowel terminal ileum vs Small
bowel terminal ileum

Resected polyps vs Resected polyps
Gastric polyps vs Gastric polyps
Esophagitis vs Esophagitis

Retroflex rectum vs Retroflex rectum

Normal esophagus vs Normal esophagus
Normal stomach vs Normal stomach

Dyed-resection-margins vs Dyed-resection-margins

Mucosal inflammation large bowel vs Mucosal
inflammation large bowel

Resection margins vs Resection margins

Blood in lumen vs Blood in lumen

Colorectal cancer vs Colorectal cancer

Gastroesophageal junction normal z-line vs
Gastroesophageal junction normal z-line

Pylorus vs Pylorus
Colon polyps vs Colon polyps

Colon diverticula vs Colon diverticula

0.3630 0.3998 0.0848 0.0117
0.2549 0.4008 0.0656 0.0079
0.2143 0.2885 0.0745 0.0098
0.2667 0.3325 0.0545 0.0095
0.2946 0.3186 0.0424 0.0095
0.2193 0.3162 0.0716 0.0123
0.2964 0.3584 0.0775 0.0173
0.1922 0.2909 0.0820 0.0146
0.2270 0.3246 0.0688 0.0092
0.1831 0.3076 0.0875 0.0173
0.3084 0.4720 0.0652 0.0113
0.2374 0.3794 0.0749 0.0132
0.4112 0.5511 0.0646 0.0057
0.1980 0.3488 0.0926 0.0116
0.2720 0.3662 0.0539 0.0084
0.2083 0.2978 0.0774 0.0135
0.2714 0.4103 0.0662 0.0068
0.1764 0.2835 0.0905 0.0086
0.2178 0.2912 0.0643 0.0105
0.3113 0.4723 0.0713 0.0127
0.3177 0.3767 0.0552 0.0165
0.2539 0.3428 0.0577 0.0111
0.2092 0.3422 0.0616 0.0101

Table (3) illustrates that the intra-class similarity
measures reveal SSIM values are predominantly
elevated in the HH subband relative to the LL
MSE values

subband, whereas are more

pronounced in the LL subband. This indicates a

higher resemblance in the high-frequency
components and more discernible distinctions in
the low-frequency components, offering insights
into intra-class variability, which may also aid in

further categorization with other classes.

Table 3: Comparison of Similarity Metrics (SSIM and MSE) for LL and HH Sub-bands within Intra-class Pairs

Statistic Average SSIM  Average SSIM  Average MSE Average MSE
(LL Sub-band) (HH Sub-band) (LL Sub-band) (HH Sub-band)
Minimum 0.1764 0.2835 0.0424 0.0057
value
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Maximum 04112 0.5511
value
Mean value 0.2567 0.3597

0.0926 0.0173

0.0698 0.0113

Intra-class analysis of the LL sub band indicates
that the value of SSIM is comparatively low;
nevertheless, the value of MSE is considerably
high. That is, even components of the same
category existing at low frequency have
significant differences; this is an indication of
differences in general structure, texture, or light.
Such variation denotes intra-class variance,
which is a crucial variable to reach the
determine  the

classification models or

homogeneity of the classes.

In order to examine the reliability of the
proposed method of similarity assessment, we
point out that the values of intra-class similarity
(within the same class) are usually larger than
inter-class similarity. This is expected, because
all of the photos are of the same class, as it is in
keeping with the properties of medical images in
such gastrointestinal dataset, where photos of
similar anatomical or pathological classes share

inherent structural and textural features.

The intra-class heterogeneity is effectively
captured by the proposed similarity evaluation
method as can be observed by the results in
Tables 2 and 3. This difference in the values of
SSIM and MSE within a single group can be
explained by the fact that there is a biological
and anatomic diversity in gastrointestinal

medical pictures. This variable is an indicator of

the accuracy and reliability of the proposed
similarity measurement method, how it is
sensitive to subtle differences within the same
class, thus making the classification models
better at analyzing gastrointestinal data. The
current observation aligns with the recent study
conducted by Cambay et al. (2024), that
highlights the fact that intra-class variability is
an issue of significant issues in medical picture
classification, particularly in the gastrointestinal
domain. The authors in the research attribute
this variation to other factors such as difference
in lighting, imaging angles, and heterogeneity of
the tissues and this necessitates consideration of
this variability in the designing of the

classification algorithms [15].

4.2 Classification-based Functional

Evaluation

The findings of RF of images of LL and HH are
provided in this section. Performance measures
(accuracy, recall, precision, and Fl-score) are
contrasted with the similarity based complexity
predictions to establish whether classes with
higher similarity exhibit lower classification
accuracy. The effect of class imbalance and
limited sample diversity in GastroVision dataset
is also discussed to put the classification

performance into context.
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The RF model was used in every classification
experiment in a controlled setup to ascertain
consistency and interpretability of frequency-
band testing. In particular, the trees size (n
estimators) was to be 10, which is lightweight
but expressive enough to detect simple decision
patterns ~ without  creating  too  many
computational costs. Such a small sample size of
trees is consistent with the exploratory nature of
this analysis where the most important goal is to
compare the discriminative roles of the LL and
HH sub-bands as opposed to optimizing the
level of model performance. Moreover, a fixed
random seed (42) allows getting a complete
reproducibility of all classification outcomes.
This controlled environment enables the
differences observed in the performance of the
various frequency sub-bands to be associated
with the properties of the data instead of

differences in the complexity of the model.

In order to obtain a similar and representative
assessment, an 80/20 train and test split was
applied to the data. The stratification sampling
strategy was used in order to maintain the
original proportions of classes in both subsets,
which is specifically necessary due to the high
imbalance of the dataset. A fixed random seed
(42) has been used to split to ensure the
reproducibility of the experiments is complete.
The stratification was used to maintain the

original distribution of classes and to obtain a

fair assessment because the imbalance of classes

in the data is enormous.

Cross-validation was not used due to the main
aim of the study to not receive the most
optimized or generalized classification results
but to have the decomposition of frequency-
bands (LL vs. HH) on the separability of classes
and to examine how patterns of similarity
connect to the results of classification. The fixed
train-test split enabled us to have a controlled
and constant evaluation factor that would ensure
that the performance differences realized
between LL and HH sub-bands could be directly
attributed to the intrinsic discriminatory nature
of the bands and not due to resampling

manipulation.

This sub-section will provide the performance of
classification attained with the Random Forest
classifier against the two sub-bands, namely, the
LL and HH. These findings allow a practical
comparison of the functionality of low- and
high-frequency representations, showing how
each frequency band has contributed to the class
classification

separability and overall

effectiveness.

The randomization of the RF model using the
LL (Low-Low) subband summarizes the
classification performance of the RF model as
shown in table 4. According to the macro and

weighted F1-scores, the total accuracy was 43%.
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Table 4: Presents the classification report for the LL sub-band, encompassing precision, recall, F1-score, and total
accuracy across all classes

Class Precision  Recall Fl1-score Support
Barretts esophagus 0.06 0.05 0.06 19
Dyed-lifted-polyps 0.00 0.00 0.00 28
Ileocecal valve 0.21 0.10 0.14 40
Normal mucosa and vascular pattern in the large bowel 0.45 0.72 0.55 293
Cecum 0.00 0.00 0.00 23
Accessory tools 0.58 0.60 0.59 253
Duodenal bulb 0.23 0.27 0.25 41
Small bowel terminal ileum 0.43 0.56 0.49 169
Resected polyps 0.00 0.00 0.00 19
Gastric polyps 0.14 0.08 0.10 13
Esophagitis 0.07 0.05 0.06 21
Retroflex rectum 0.50 0.08 0.13 13
Normal esophagus 0.56 0.32 0.41 28
Normal stomach 0.52 0.59 0.55 194
Dyed-resection-margins 0.21 0.12 0.15 49
Mucosal inflammation large bowel 0.00 0.00 0.00 6
Resection margins 0.00 0.00 0.00 5
Blood in lumen 0.25 0.03 0.05 34
Colorectal cancer 0.00 0.00 0.00 28
Gastroesophageal junction normal z-line 0.36 0.33 0.35 66
Pylorus 0.30 0.20 0.24 79
Colon polyps 0.32 0.23 0.27 164
Colon diverticula 0.00 0.00 0.00 6
Accuracy 0.43 1591
Macro avg 0.23 0.19 0.19 1591
Weighted avg 0.39 0.43 0.39 1591

Higher recall values were noted for broad
structural classifications such as Normal mucosa
and Normal stomach, however texture-rich or
pathologically  analogous categories like
Barrett’s esophagus and Colorectal cancer had
diminished scores. The results demonstrate that
the LL sub-band proficiently catches coarse
structural patterns and lighting signals, although
textural

it fails to include the finer

characteristics necessary for distinguishing

visually comparable disease situations.

The classification results of the Random Forest
(RF) model for the HH (High—High) sub-band
are presented in Table 5. The model attained an
overall accuracy of 32%, with macro and
weighted Fl-scores of 0.12 and 0.29,

respectively.

Table 5: displays the relevant data for the HH sub-band under identical testing conditions

Class Name

Precision Recall F1-score Support

Barrett’s esophagus
Dyed-lifted-polyps
Ileocecal valve

Normal mucosa and vascular pattern in the large bowel

0.00 0.00 0.00 19
0.00 0.00 0.00 28
0.00 0.00 0.00 40
0.37 0.53 0.44 293
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Cecum 0.00 0.00 0.00 23
Accessory tools 0.41 0.43 0.42 253
Duodenal bulb 0.00 0.00 0.00 41
Small bowel terminal ileum 0.27 0.31 0.29 169
Resected polyps 0.00 0.00 0.00 18
Gastric polyps 0.00 0.00 0.00 13
Esophagitis 0.08 0.05 0.06 22
Retroflex rectum 0.00 0.00 0.00 13
Normal esophagus 0.25 0.29 0.27 28
Normal stomach 0.39 0.49 0.44 194
Dyed-resection-margins 0.14 0.04 0.06 49
Mucosal inflammation large bowel 0.00 0.00 0.00 6
Resection margins 0.00 0.00 0.00 5
Blood in lumen 0.00 0.00 0.00 34
Colorectal cancer 0.20 0.04 0.06 28
Gastroesophageal junction normal z-line 0.23 0.21 0.22 66
Pylorus 0.25 0.27 0.26 79
Colon polyps 0.20 0.30 0.24 164
Colon diverticula 0.00 0.00 0.00 6
Accuracy 0.32 1591
Macro avg 0.12 0.13 0.12 1591
Weighted avg 0.27 0.32 0.29 1591
While  certain  structural  classifications, vascular pattern in the large bowel, Normal

including normal mucosa and vascular patterns
in the large bowel, normal stomach, and
accessory tools, had relatively superior memory,
the majority of fine-textured or low-contrast
categories

produced poor or negligible

recollection.

This result indicates that the HH sub-band
preserves high-frequency texture details but is
more susceptible to noise and fluctuations in
illumination, resulting in unstable class
separability and less overall discriminative

power.

The classification results in Tables (4) and (5)
demonstrate that the LL sub-band regularly
surpasses the HH sub-band, especially for the

predominant classes of Normal mucosa and

stomach, and accessory tools. This supports the
use of LL characteristics as the main input for
classification and is consistent with the
suggested similarity-based analysis, which
found decreased inter-class similarity in the LL
band for these classes, as seen in Table (6).
Consequently, the three classes were able to
perform better in terms of classification
accuracy, partially due to the larger sample size.
As it can be seen in Figure 1, the dataset is
highly skewed, which is usually a challenge to
classifiers. However, even though one can
observe a large intra-class variability in these
classes (Table (2)), the large size of the sample
relieved the imbalance effect, resulting in the
model achieving a relatively stable higher

performance.
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Table 6: . Inter-class similarity metrics (SSIM and MSE) for the three principal categories: Normal mucosa
and vascular pattern in the large bowel, Normal stomach, and Accessory tools compared to all other classes

Reference Class

Compared Class SSIM_LL SSIM HH MSELL MSE_HH

Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel
Normal mucosa and vascular pattern in the
large bowel

Barretts esophagus 0.1555 0.2915 0.0969 0.0113
Pylorus 0.1773 0.2920 0.0871 0.0101
Dyed-resection- 0.1972 0.2879 0.0675 0.0106
margins
Resected polyps 0.1926 0.2776 0.0683 0.0095
Colorectal cancer 0.1727 0.2662 0.0725 0.0105
Colon polyps 0.1779 0.2870 0.0782 0.0123
Colon diverticula 0.1692 0.2847 0.0712 0.0100
Dyed-lifted-polyps 0.1995 0.2874 0.0657 0.0092
Ileocecal valve 0.1870 0.2522 0.0726 0.0107
Blood in lumen 0.1667 0.2865 0.0848 0.0097
Normal esophagus 0.1514 0.3245 0.0992 0.0098
Retroflex rectum 0.1927 0.3138 0.0720 0.0110
Gastroesophageal jun 0.1524 0.3060 0.1003 0.0109
ction_normal z-line
Accessory tools 0.1860 0.2748 0.0772 0.0089
Small bowel terminal 0.1790 0.2453 0.0779 0.0118
ileum
Mucosal inflammation 0.1764 0.2700 0.0774 0.0109
large bowel
Resection margins 0.2033 0.3120 0.0706 0.0086
Normal stomach 0.1520 0.2700 0.0859 0.0162
Esophagitis 0.1523 0.3212 0.0982 0.0124
Cecum 0.2143 0.2677 0.0610 0.0115
Gastric polyps 0.1481 0.2780 0.0932 0.0116
Duodenal bulb 0.1763 0.2514 0.0926 0.0097

It was found that the use of LL features
enhances discriminative power and provides a
more reliable input space on which further
classification should be performed, and accuracy
and Fl-scores are improved by approximately

10 percent, in comparison to the HH subband.

Random Forest tests showed poor classification
of several classifications ( Colon diverticula,
Colorectal cancer, Mucosal inflammation of the
large bowel, Resected polyps, Cecum, Dyed-
lifted polyps, and Resection margins) (Table
(4)). The results from Table (2) and Figure (1)
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confirm that two compounding challenges

define these categories:

+ Elevated intra-class variability, indicated
by increased SSIM and MSE values in the
LL and HH sub-bands, demonstrates
considerable variance across images within
the same class.

» Insufficient sample size, specifically as
they constitute minor classes within the
dataset, which intensifies the effects of
imbalance on model training and diminishes
the classifier's

capacity to acquire

differentiating characteristics.

All these factors explain the poor performance
of these small classes in classification even
though feature extraction based on similarity is
more effective in other larger classes. This
brings out the importance of addressing class
imbalance and within-class variability in

medical imaging databases and particularly in

gastrointestinal endoscopic pictures.

The intra-class variation of the Colon polyps as
in Table 2 is clear in this case, although it is also
a major class not affected by the sample
imbalance that affected the smaller classes. The
similarity to other classes is relatively low,
which means that inter-class differences are
maintained sufficiently. However, there was a
low classification accuracy because there was a

great disparity within the class alone.

On the other extreme, the six minor categories,
such as, Colon diverticula, Colorectal cancer,
Mucosal inflammation of the large intestine,
Resected polyps, Cecum, and Dyed-lifted
polyps, achieved a classification accuracy of
zero, primarily because they showed a lot of
intra-class variability and had a small sample
size. Although this variability difficulty is linked
to the colon polyps, the larger sample size
facilitated the model to overcome this limitation
to some extent resulting in high performance

relative to the smaller classes.
4. Conclusion and Future work

The paper presents an elaborate discussion on

gastrointestinal ~ (GI)  endoscopic  image
classification with a particular focus on the
relationship  between  frequency-dependent
characteristics, intra-class variation, inter-class
similarity, and sample size. It can be seen that
low-frequency structural cues provide more
discriminative power by comparing the
proposed frequency-band-based framework that
uses Discrete Wavelet Transform (DWT) to
differentiate between LL (low-frequency) and
HH (high-frequency) sub-bands. At the same
time, high-frequency details, still containing
textures and edges, have the effect of raising the
similarity between classes and are not as
effective at distinguishing between classes.Its
most significant conclusion is that intra-class

heterogeneity can have a significant effect on
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classification difficulty. Although there is
physical separation between classes (low inter-
class SSIM), the internal diversity, especially of
minority classes (colon diverticula, colorectal
cancer, and dyed-lifted polyps), has a 0%
classification accuracy. Conversely, most of the
classes, including colon polyps, had a good f1-
score (approximately 27%), regardless of the
heterogeneity and it is therefore clear that
sample size reduces the negative impact of
heterogeneity  partially. The study also
demonstrates that frequency-sensitive selection
of features enhances interpretability and efficacy
of the classifier. The focus on LL sub-bands is
associated with a better classification
performance, which suggests that automated
gastrointestinal image analysis should be
focused on global structured information as
opposed to detailed textures, particularly when
there is high intra-class heterogeneity. Such
results indicate that augmenting the performance
of classification will require more than just
increasing the size of the sample. Intra-class
variability is an important aspect that should be
dealt with by means of pre-processing methods,
such as normalization of illumination, picture
alignment, and focused augmentation, in
general, focusing on minority classes. Moreover,
frequency-domain analysis offers quantitative
method of feature selection that reduces
dimensions and helps to improve computing

efficiency with no significant loss of

discriminative power.To sum up, it is stressed in
the study that a delicate balance between inter-
class differentiation, intra-class variability, and
sample distribution is the key to the successful
classification of GI images. These lessons will
provide fundamental guidance to the creation of
effective

sustainable, interpretable, and

automated medical imaging.

This research forms the basis of building the
custom classification models of the hardest
classes that are detected by the intra and inter
class similarity analysis. Using the low-
frequency features based on the wavelets, future
studies are aimed to provide increased accuracy
and strength of such complicated classes and
enable more effective automated processing of

the gastrointestinal images.

An extension of the present work to include
cross-validation and optimization of
hyperparameters could be applied to a specific
classification model once a dedicated
classification model is created relying on the
results of this exploratory analysis. Although the
Haar wavelet was used in the present research
because of its simplicity and success in
decomposing the low and high-frequency
components, research can be done in the future
using the more advanced wavelet families,
including Daubechies and Symlets.
Incorporating these wavelets may possibly

provide better representation of features, intra-
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class discrimination and increase classification

accuracy, especially on difficult classes found in

this work.
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